Part Number Hot Search : 
BCM2705 CP20100S SPX43204 F7343 CS291N14 SS428 ADM3202 IPB80N06
Product Description
Full Text Search
 

To Download MC68HC08GP32 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
MC68HC908GP32 MC68HC08GP32
Technical Data
M68HC08
Microcontrollers
MC68HC908GP32/H Rev. 6, 8/2002
MOTOROLA.COM/SEMICONDUCTORS
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
MC68HC908GP32 MC68HC08GP32
Technical Data
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Motorola and the Stylized M logo are registered trademarks of Motorola, Inc. digital dna is a trademark of Motorola, Inc.
(c) Motorola, Inc., 2002
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA
Technical Data 1
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Revision History
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://motorola.com/semiconductors The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.
Freescale Semiconductor, Inc...
Revision History
Date Revision Level Description Section 22. Timer Interface Module (TIM) -- Timer discrepancies corrected throughout this section. August, 2002 6 Section 24. Mechanical Specifications -- Replaced incorrect 44-pin QFP drawing, case 824E to case 824A. In Table 15-1, second cell in "Comment" column, corrected PTC to PTC1. In Figure 21-2, Timebase control register, bit 0 is a reserved bit. July, 2001 5 Updated crystal oscillator component values in 23.17.1 CGM Component Specifications. Added appendix A: MC68HC08GP32 -- ROM part. 387 397 393 199 337 Page Number(s) 341
Technical Data 2
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
List of Sections
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 31 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Freescale Semiconductor, Inc...
Section 3. Low-Power Modes. . . . . . . . . . . . . . . . . . . . . . 57 Section 4. Resets and Interrupts . . . . . . . . . . . . . . . . . . . 69 Section 5. Analog-to-Digital Converter (ADC) . . . . . . . . 87 Section 6. Break Module (BRK) . . . . . . . . . . . . . . . . . . . . 97 Section 7. Clock Generator Module (CGMC) . . . . . . . . 105 Section 8. Configuration Register (CONFIG) . . . . . . . . 137 Section 9. Computer Operating Properly (COP) . . . . . 141 Section 10. Central Processor Unit (CPU) . . . . . . . . . . 147 Section 11. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . 165 Section 12. External Interrupt (IRQ) . . . . . . . . . . . . . . . 175 Section 13. Keyboard Interrupt Module (KBI). . . . . . . . 181 Section 14. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 189 Section 15. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 195 Section 16. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 211 Section 17. Random-Access Memory (RAM) . . . . . . . . 235 Section 18. Serial Communications Interface Module (SCI) . . . . . . . . . . . . . . . . . . . . . . . 237 Section 19. System Integration Module (SIM) . . . . . . . 277
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA List of Sections For More Information On This Product, Go to: www.freescale.com
Technical Data 3
Freescale Semiconductor, Inc.
List of Sections
Section 20. Serial Peripheral Interface Module (SPI) . . 303 Section 21. Timebase Module (TBM) . . . . . . . . . . . . . . . 335 Section 22. Timer Interface Module (TIM) . . . . . . . . . . . 341 Section 23. Electrical Specifications. . . . . . . . . . . . . . . 365 Section 24. Mechanical Specifications . . . . . . . . . . . . . 391 Section 25. Ordering Information . . . . . . . . . . . . . . . . . 395
Freescale Semiconductor, Inc...
Appendix A. MC68HC08GP32 . . . . . . . . . . . . . . . . . . . . 397
Technical Data 4
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 List of Sections For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Table of Contents
Section 1. General Description
1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Freescale Semiconductor, Inc...
1.2
1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.1 Standard Features of the MC68HC908GP32. . . . . . . . . . . . 32 1.3.2 Features of the CPU08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.4 1.5 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 39 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 40 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6.4 External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6.5 CGM Power Supply Pins (VDDA and VSSA) . . . . . . . . . . . . .41 1.6.6 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 41 1.6.7 ADC Power Supply/Reference Pins (VDDAD/VREFH and VSSAD/VREFL) . . . . . . . . . . . . . . . . . . 41 1.6.8 Port A Input/Output (I/O) Pins (PTA7/KBD7-PTA0/KBD0) . 41 1.6.9 Port B I/O Pins (PTB7/AD7-PTB0/AD0) . . . . . . . . . . . . . . . 41 1.6.10 Port C I/O Pins (PTC6-PTC0) . . . . . . . . . . . . . . . . . . . . . . . 42 1.6.11 Port D I/O Pins (PTD7/T2CH1-PTD0/SS) . . . . . . . . . . . . . . 42 1.6.12 Port E I/O Pins (PTE1/RxD-PTE0/TxD). . . . . . . . . . . . . . . .42
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 5
Freescale Semiconductor, Inc.
Table of Contents
Section 2. Memory Map
2.1 2.2 2.3 2.4 2.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 43 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Freescale Semiconductor, Inc...
Section 3. Low-Power Modes
3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7 Computer Operating Properly Module (COP). . . . . . . . . . . . . . 61 3.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.8 External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . 62 3.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.9
Technical Data 6
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . 62
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
3.9.1 3.9.2
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . . 63 3.10.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.10.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.11 Serial Communications Interface Module (SCI) . . . . . . . . . . . . 63 3.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Freescale Semiconductor, Inc...
3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . 64 3.12.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.12.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.13 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . 64 3.13.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.13.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.14.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.14.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.15 3.16 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Section 4. Resets and Interrupts
4.1 4.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.3.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.3.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.3 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.3.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.3.2 COP Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.3 Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.4 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.4 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 74
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com Technical Data 7
Freescale Semiconductor, Inc.
Table of Contents
4.4 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 4.4.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.2.1 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.2 Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.3 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.4 CGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.5 TIM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.6 TIM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.2.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.2.8 SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.2.9 KBD0-KBD7 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.2.10 ADC (Analog-to-Digital Converter). . . . . . . . . . . . . . . . . . 83 4.4.2.11 TBM (Timebase Module) . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.3 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.3.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.3.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . 86
Freescale Semiconductor, Inc...
Section 5. Analog-to-Digital Converter (ADC)
5.1 5.2 5.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Technical Data 8
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
5.7.1 5.7.2 5.7.3
ADC Analog Power Pin (VDDAD)/ ADC Voltage Reference High Pin (VREFH) . . . . . . . . . . . 92 ADC Analog Ground Pin (VSSAD)/ ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . 92 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . 93 5.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Freescale Semiconductor, Inc...
Section 6. Break Module (BRK)
6.1 6.2 6.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . .100 6.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 100 6.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .100 6.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 100 6.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 6.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 6.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 101 6.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .102 6.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.6.4 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . 104
Section 7. Clock Generator Module (CGMC)
7.1 7.2 7.3 7.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Technical Data 9
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Table of Contents
7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.4.6 7.4.7 7.4.8 7.4.9 Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .109 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 111 Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 111 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Special Programming Exceptions . . . . . . . . . . . . . . . . . . .117 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 117 CGMC External Connections . . . . . . . . . . . . . . . . . . . . . . . 118
Freescale Semiconductor, Inc...
7.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.5.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 119 7.5.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 119 7.5.3 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 120 7.5.4 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 120 7.5.5 PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 120 7.5.6 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 120 7.5.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB) . . . . . . 120 7.5.8 Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . 121 7.5.9 CGMC Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . 121 7.5.10 CGMC CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . 121 7.6 CGMC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.6.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . 125 7.6.3 PLL Multiplier Select Register High . . . . . . . . . . . . . . . . . . 127 7.6.4 PLL Multiplier Select Register Low. . . . . . . . . . . . . . . . . . . 128 7.6.5 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . . 129 7.6.6 PLL Reference Divider Select Register . . . . . . . . . . . . . . . 130 7.7 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.8.3 CGMC During Break Interrupts . . . . . . . . . . . . . . . . . . . . . 132 7.9 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .133 7.9.1 Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . . 133 7.9.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . . 134 7.9.3 Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Technical Data 10 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
Section 8. Configuration Register (CONFIG)
8.1 8.2 8.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Section 9. Computer Operating Properly (COP)
9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Freescale Semiconductor, Inc...
9.2 9.3
9.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 9.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 144 9.5 9.6 9.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 9.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .146
Section 10. Central Processor Unit (CPU)
10.1 10.2 10.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 11
Freescale Semiconductor, Inc.
Table of Contents
10.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 10.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . .152 10.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . .154
Freescale Semiconductor, Inc...
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 10.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.7 10.8 10.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 155 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Section 11. FLASH Memory
11.1 11.2 11.3 11.4 11.5 11.6 11.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 167 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 168 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 11.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . .172 11.9 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.10 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Technical Data 12
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
Section 12. External Interrupt (IRQ)
12.1 12.2 12.3 12.4 12.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .179 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 179
Freescale Semiconductor, Inc...
12.6 12.7
Section 13. Keyboard Interrupt Module (KBI)
13.1 13.2 13.3 13.4 13.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .186
13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 13.8.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 187 13.8.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 188
Section 14. Low-Voltage Inhibit (LVI)
14.1 14.2 14.3 14.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 13
Freescale Semiconductor, Inc.
Table of Contents
14.4.1 14.4.2 14.4.3 14.4.4 14.5 14.6 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 192 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Freescale Semiconductor, Inc...
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 14.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 14.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Section 15. Monitor ROM (MON)
15.1 15.2 15.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Section 16. Input/Output (I/O) Ports
16.1 16.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 16.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 16.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . 216 16.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 218 16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 16.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 16.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 220
Technical Data 14 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 16.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222 16.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . 223 16.5.3 Port C Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 225 16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 16.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226 16.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 228 16.6.3 Port D Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 230
Freescale Semiconductor, Inc...
16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 16.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 16.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . 232
Section 17. Random-Access Memory (RAM)
17.1 17.2 17.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Section 18. Serial Communications Interface Module (SCI)
18.1 18.2 18.3 18.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 18.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 18.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 18.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 18.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 245 18.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 18.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 18.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 247 18.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 247 18.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com Technical Data 15
Freescale Semiconductor, Inc.
Table of Contents
18.5.3.1 18.5.3.2 18.5.3.3 18.5.3.4 18.5.3.5 18.5.3.6 18.5.3.7 18.5.3.8 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Freescale Semiconductor, Inc...
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . 258
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 18.8.1 PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 258 18.8.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 258 18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 18.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 18.9.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18.9.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 18.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 18.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .274
Section 19. System Integration Module (SIM)
19.1 19.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 281 19.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 19.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . 281 19.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 282 19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 282 19.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 19.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 284
Technical Data 16 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
19.4.2.1 19.4.2.2 19.4.2.3 19.4.2.4 19.4.2.5 19.4.2.6
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Computer Operating Properly (COP) Reset. . . . . . . . . . 286 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 287 Monitor Mode Entry Module Reset (MODRST) . . . . . . . 287
Freescale Semiconductor, Inc...
19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 19.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 287 19.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 288 19.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . .288 19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 19.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 19.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 19.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 19.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . 292 19.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 19.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 19.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 295 19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295 19.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 19.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 19.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 298 19.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 300 19.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 301
Section 20. Serial Peripheral Interface Module (SPI)
20.1 20.2 20.3 20.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 20.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 17
Freescale Semiconductor, Inc.
Table of Contents
20.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 20.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . 309 20.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 310 20.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 312 20.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 313 20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Freescale Semiconductor, Inc...
20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 20.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 20.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323 20.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .324 20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 20.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 325 20.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 325 20.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .326 20.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 20.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 20.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 20.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 330 20.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Section 21. Timebase Module (TBM)
21.1 21.2 21.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Technical Data 18
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
21.4 21.5 21.6
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 337 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339 21.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 21.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Section 22. Timer Interface Module (TIM)
Freescale Semiconductor, Inc...
22.1 22.2 22.3 22.4
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 22.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 22.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 22.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 22.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 348 22.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . 349 22.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 349 22.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 350 22.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 351 22.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 22.8 22.9 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 354 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 22.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 356 22.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 19
Freescale Semiconductor, Inc.
Table of Contents
22.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 359 22.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .360 22.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Section 23. Electrical Specifications
23.1 23.2 23.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .366 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 367 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 5.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 368 3.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 370 5.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 3.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Freescale Semiconductor, Inc...
23.4 23.5 23.6 23.7 23.8 23.9
23.10 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . .374 23.11 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . . 377 23.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 23.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 23.14 5.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 23.15 3.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 23.16 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 387 23.17 Clock Generation Module Characteristics . . . . . . . . . . . . . . . 387 23.17.1 CGM Component Specifications . . . . . . . . . . . . . . . . . . . . 387 23.17.2 CGM Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . 388 23.18 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Technical Data 20
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
Section 24. Mechanical Specifications
24.1 24.2 24.3 24.4 24.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 40-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 392 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . . 392 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 393
Freescale Semiconductor, Inc...
Section 25. Ordering Information
25.1 25.2 25.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Appendix A. MC68HC08GP32
A.1 A.2 A.3 A.4 A.5 A.6 A.7 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 Mask Option Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 A.8.1 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . 403 A.8.2 5.0-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . 403 A.8.3 3.0-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . 404 A.8.4 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 A.9 ROM MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 21
Freescale Semiconductor, Inc.
Table of Contents
Freescale Semiconductor, Inc...
Technical Data 22
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Table of Contents For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
List of Figures
Figure 1-1 1-2 1-3 1-4 1-5 2-1 2-2 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 5-1 5-2 5-3 5-4 6-1 6-2 6-3 6-4 6-5 6-6 6-7 Title Page
Freescale Semiconductor, Inc...
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 40-Pin PDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 37 42-Pin SDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 38 44-Pin QFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 47 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Power-On Reset Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . 74 Interrupt Stacking Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 77 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . .85 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . .85 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . .86 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . . 93 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 ADC Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . . . 95 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 99 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 101 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 102 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 102 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 103 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 104
Technical Data 23
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA List of Figures For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
List of Figures
Figure 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 8-1 8-2 9-1 9-2 10-1 10-2 10-3 10-4 10-5 10-6 11-1 11-2 11-3 11-4 12-1 12-2 12-3 Title Page
Freescale Semiconductor, Inc...
CGMC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 CGMC External Connections . . . . . . . . . . . . . . . . . . . . . . . . . 119 CGMC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . 122 PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 123 PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . . . . 126 PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . . 127 PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . . 128 PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . . 129 PLL Reference Divider Select Register (PMDS) . . . . . . . . . . 130 PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .138 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .138 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . .145 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . 152 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . 166 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . 171 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . 172 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . 172 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .177 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 177 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 180
13-1 Keyboard Module Block Diagram . . . . . . . . . . . . . . . . . . . . . .183 13-2 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 13-3 Keyboard Status and Control Register (INTKBSCR) . . . . . . . 187 13-4 Keyboard Interrupt Enable Register (INTKBIER) . . . . . . . . . . 188 14-1
Technical Data 24
LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 List of Figures For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
List of Figures
Figure 14-2 14-3 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 16-10 16-11 16-12 16-13 16-14 16-15 16-16 16-17 16-18 16-19 18-1 18-2 18-3 18-4 18-5 18-6
Title
Page
LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 201 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . .208 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 209 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .215 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 216 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . . 218 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .219 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 220 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . .222 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . . 223 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Port C Input Pullup Enable Register (PTCPUE) . . . . . . . . . . . 225 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .226 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 228 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Port D Input Pullup Enable Register (PTDPUE) . . . . . . . . . . . 230 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .231 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 232 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 241 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 249 Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
Technical Data 25
Freescale Semiconductor, Inc...
MOTOROLA
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 List of Figures For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
List of Figures
Figure 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15 18-16 19-1 19-2 19-3 19-4 19-5 19-6 19-7 19-8 19-9 19-10 19-11 19-12 19-13 19-14 19-15 19-16 19-17 19-18 19-19 19-20 19-21 19-22 20-1 20-2 20-3
Technical Data 26
Title
Page
Freescale Semiconductor, Inc...
Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 260 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 263 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 265 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 268 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 272 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 274 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 280 CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 291 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . .293 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . .293 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . .294 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 296 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 296 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 298 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 298 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 300 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 301 SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . . 307
MC68HC908GP32*MC68HC08GP32 -- Rev. 6
List of Figures For More Information On This Product, Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
List of Figures
Figure 20-4 20-5 20-6 20-7 20-8 20-9 20-10 20-11 20-12 20-13 20-14 20-15 21-1 21-2 22-1 22-2 22-3 22-4 22-5 22-6 22-7 22-8 22-9 22-10 22-11 22-12 22-13 22-14 22-15 23-1 23-2 23-3
Title
Page
Freescale Semiconductor, Inc...
Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . 311 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . . 312 Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . . 314 SPRF/SPTE CPU Interrupt Timing . . . . . . . . . . . . . . . . . . . . . 315 Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . . 317 Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . . 318 SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . . 321 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . . 328 SPI Status and Control Register (SPSCR) . . . . . . . . . . . . . . .330 SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . . 337 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 350 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 356 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . . 358 TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . . 358 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . .359 TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 359 TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 360 TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 360 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 364 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 364 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 364 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 364 Typical High-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . . . 374 Typical High-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . . 374 Typical High-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . . 375
Technical Data 27
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA List of Figures For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
List of Figures
Figure 23-4 23-5 Title Page
23-6
Freescale Semiconductor, Inc...
23-7 23-8 23-9 23-10 23-11
23-12
23-13 23-14 23-15 23-16 23-17 A-1 A-2 A-3 A-4 A-5 A-6 A-7
Technical Data 28
Typical High-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . 375 Typical High-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 5.5 Vdc) . . . . . . . .376 Typical High-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 2.7 Vdc) . . . . . . . .376 Typical Low-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 5.5 Vdc) . . . . . . . . . . . . . . . . . . . 377 Typical Low-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . . 377 Typical Low-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . . 378 Typical Low-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . 378 Typical Low-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 5.5 Vdc) . . . . . . . .379 Typical Low-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 2.7 Vdc) . . . . . . . .379 Typical Operating IDD, with All Modules Turned On (-40 C to 85 C) . . . . . . . . . 380 Typical Wait Mode IDD, with all Modules Disabled (-40 C to 85 C) . . . . . . . . . . . 380 Typical Stop Mode IDD, with all Modules Disabled (-40 C to 85 C) . . . . . . . . . . . 381 SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 MC68HC08GP32 Block Diagram . . . . . . . . . . . . . . . . . . . . . .399 MC68HC08GP32 Memory Map . . . . . . . . . . . . . . . . . . . . . . . 400 Mask Option Register 2 (MOR2) . . . . . . . . . . . . . . . . . . . . . . 402 Mask Option Register 1 (MOR1) . . . . . . . . . . . . . . . . . . . . . . 402 Typical Operating IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 Typical Wait Mode IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Typical Stop Mode IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
MC68HC908GP32*MC68HC08GP32 -- Rev. 6
List of Figures For More Information On This Product, Go to: www.freescale.com
MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32
List of Tables
Table 2-1 Title Page
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Numeric Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . . 125 PRE1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . . 125 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Freescale Semiconductor, Inc...
4-1 4-2 5-1 5-2 7-1 7-3 7-2 10-1 10-2 14-1
15-1 Monitor Mode Signal Requirements and Options . . . . . . . . . . 199 15-2 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 15-3 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 203 15-4 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 205 15-5 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 205 15-6 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 206 15-7 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 206 15-8 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . .207 15-9 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 207 16-1 16-2 16-3 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . . 214 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Technical Data 29
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA List of Tables For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
List of Tables
Table 16-4 16-5 16-6 18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 19-1 19-2 19-3 19-4 20-1 20-2 20-3 20-4 21-1 22-1 22-2 22-3 25-1 A-1 A-2 Title Page
Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .262 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . . 276 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . 333 Timebase Rate Selection for OSC1 = 32.768-kHz . . . . . . . . . 337 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . .362 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 Summary of MC68HC08GP32 and MC68HC908GP32 differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 ROM MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Freescale Semiconductor, Inc...
Technical Data 30
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 List of Tables For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 1. General Description
1.1 Contents
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Freescale Semiconductor, Inc...
1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.1 Standard Features of the MC68HC908GP32. . . . . . . . . . . . 32 1.3.2 Features of the CPU08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.4 1.5 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.6.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 39 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 40 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6.4 External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.6.5 CGM Power Supply Pins (VDDA and VSSA) . . . . . . . . . . . . .41 1.6.6 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 41 1.6.7 ADC Power Supply/Reference Pins (VDDAD/VREFH and VSSAD/VREFL) . . . . . . . . . . . . . . . . . . 41 1.6.8 Port A Input/Output (I/O) Pins (PTA7/KBD7-PTA0/KBD0) . 41 1.6.9 Port B I/O Pins (PTB7/AD7-PTB0/AD0) . . . . . . . . . . . . . . . 41 1.6.10 Port C I/O Pins (PTC6-PTC0) . . . . . . . . . . . . . . . . . . . . . . . 42 1.6.11 Port D I/O Pins (PTD7/T2CH1-PTD0/SS) . . . . . . . . . . . . . . 42 1.6.12 Port E I/O Pins (PTE1/RxD-PTE0/TxD). . . . . . . . . . . . . . . .42
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com
Technical Data 31
Freescale Semiconductor, Inc.
General Description 1.2 Introduction
The MC68HC908GP32 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.
1.3 Features
Freescale Semiconductor, Inc...
For convenience, features have been organized to reflect: * * Standard features of the MC68HC908GP32 Features of the CPU08
1.3.1 Standard Features of the MC68HC908GP32 * * * * * * * High-performance M68HC08 architecture optimized for C-compilers Fully upward-compatible object code with M6805, M146805, and M68HC05 Families 8-MHz internal bus frequency FLASH program memory security1 On-chip programming firmware for use with host personal computer which does not require high voltage for entry In-system programming System protection features: - Optional computer operating properly (COP) reset - Low-voltage detection with optional reset and selectable trip points for 3.0-V and 5.0-V operation - Illegal opcode detection with reset - Illegal address detection with reset
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Technical Data 32
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 General Description For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
General Description Features
* *
Low-power design; fully static with stop and wait modes Standard low-power modes of operation: - Wait mode - Stop mode
* * *
Master reset pin and power-on reset (POR) 32 Kbytes of on-chip FLASH memory with in-circuit programming capabilities of FLASH program memory 512 bytes of on-chip random-access memory (RAM) Serial peripheral interface module (SPI) Serial communications interface module (SCI) Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and PWM capability on each channel 8-channel, 8-bit successive approximation analog-to-digital converter (ADC) BREAK module (BRK) to allow single breakpoint setting during in-circuit debugging Internal pullups on IRQ and RST to reduce customer system cost Clock generator module with on-chip 32-kHz crystal compatible PLL (phase-lock loop) Up to 33 general-purpose input/output (I/O) pins, including: - 26 shared-function I/O pins - Five or seven dedicated I/O pins, depending on package choice
Freescale Semiconductor, Inc...
* * *
* * * * *
*
Selectable pullups on inputs only on ports A, C, and D. Selection is on an individual port bit basis. During output mode, pullups are disengaged. High current 10-mA sink/10-mA source capability on all port pins Higher current 15-mA sink/source capability on PTC0-PTC4 Timebase module with clock prescaler circuitry for eight user selectable periodic real-time interrupts with optional active clock source during stop mode for periodic wakeup from stop using an external 32-kHz crystal
Technical Data 33
* * *
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
General Description
* Oscillator stop mode enable bit (OSCSTOPENB) in the CONFIG register to allow user selection of having the oscillator enabled or disabled during stop mode 8-bit keyboard wakeup port 5-mA maximum current injection on all port pins to maintain input protection 40-pin plastic dual-in-line package (PDIP), 42-pin shrink dual-inline package (SDIP), or 44-pin quad flat pack (QFP) Specific features of the MC68HC908GP32 in 40-pin PDIP are: - Port C is only 5 bits: PTC0-PTC4 - Port D is only 6 bits: PTD0-PTD5; single 2-channel TIM module * Specific features of the MC68HC908GP32 in 42-pin SDIP are: - Port C is only 5 bits: PTC0-PTC4 - Port D is 8 bits: PTD0-PTD7; dual 2-channel TIM modules * Specific features of the MC68HC908GP32 in 44-pin QFP are: - Port C is 7 bits: PTC0-PTC6 - Port D is 8 bits: PTD0-PTD7; dual 2-channel TIM modules 1.3.2 Features of the CPU08 Features of the CPU08 include: * * * * * * * * * *
Technical Data 34
* * * *
Freescale Semiconductor, Inc...
Enhanced HC05 programming model Extensive loop control functions 16 addressing modes (eight more than the HC05) 16-bit index register and stack pointer Memory-to-memory data transfers Fast 8 x 8 multiply instruction Fast 16/8 divide instruction Binary-coded decimal (BCD) instructions Optimization for controller applications Efficient C language support
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 General Description For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
General Description MCU Block Diagram
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908GP32. Text in parentheses within a module block indicates the module name. Text in parentheses next to a signal indicates the module which uses the signal.
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com
Technical Data 35
Freescale Semiconductor, Inc...
INTERNAL BUS M68HC08 CPU DDRA ARITHMETIC/LOGIC UNIT (ALU) PROGRAMMABLE TIMEBASE MODULE PORTA PTA7/KBD7-PTA0/KBD0
DDRB
General Description
USER RAM -- 512 BYTES 8-BIT KEYBOARD INTERRUPT MODULE 2-CHANNEL TIMER INTERFACE MODULE 1 DDRC 2-CHANNEL TIMER INTERFACE MODULE 2 SERIAL COMMUNICATIONS INTERFACE MODULE PHASE-LOCKED LOOP COMPUTER OPERATING PROPERLY MODULE SERIAL PERIPHERAL INTERFACE MODULE MONITOR MODULE PORTD 24 INTR SYSTEM INTEGRATION MODULE SINGLE EXTERNAL IRQ MODULE 8-BIT ANALOG-TO-DIGITAL CONVERTER MODULE POWER-ON RESET MODULE DDRD * RST PORTC MONITOR ROM -- 307 BYTES
PORTB
Freescale Semiconductor, Inc.
General Description For More Information On This Product, Go to: www.freescale.com
CLOCK GENERATOR MODULE OSC1 OSC2 32-kHz OSCILLATOR * IRQ MEMORY MAP MODULE CONFIGURATION REGISTER 1 MODULE CONFIGURATION REGISTER 2 MODULE PORTE DATA BUS SWITCH MODULE DDRE VDD VSS VDDA VSSA POWER
Technical Data
SINGLE BREAKPOINT BREAK MODULE DUAL VOLTAGE LOW-VOLTAGE INHIBIT MODULE USER FLASH -- 32,256 BYTES PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 PTB1/AD1 PTB0/AD0 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 PTD7/T2CH1 PTD6/T2CH0 PTD5/T1CH1 PTD4/T1CH0 PTD3/SPSCK PTD2/MOSI PTD1/MISO PTD0/SS PTE1/RxD PTE0/TxD SECURITY MODULE MONITOR MODE ENTRY MODULE
36
CPU REGISTERS
CONTROL AND STATUS REGISTERS -- 64 BYTES
USER FLASH VECTOR SPACE -- 36 BYTES
CGMXFC
VDDAD/VREFH
VSSAD/VREFL
Ports are software configurable with pullup device if input port. Higher current drive port pins * Pin contains integrated pullup device
MC68HC908GP32*MC68HC08GP32 -- Rev. 6
MOTOROLA
Figure 1-1. MCU Block Diagram
Freescale Semiconductor, Inc.
General Description Pin Assignments
1.5 Pin Assignments
VDDA (PLL) VSSA (PLL) CGMXFC (PLL) OSC2 OSC1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
PTA7/KBD7 PTA6/KBD6 PTA5/KBD5 PTA4/KBD4 PTA3/KBD3 PTA2/KBD2 PTA1/KBD1 PTA0/KBD0 VSSAD/VREFL (ADC) VDDAD/VREFH (ADC) PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 PTB1/AD1 PTB0/AD0 PTD5/T1CH1 PTD4/T1CH0
Freescale Semiconductor, Inc...
RST PTC0 PTC1 PTC2 PTC3 PTC4 PTE0/TxD PTE1/RxD IRQ PTD0/SS PTD1/MISO PTD2/MOSI PTD3/SPSCK VSS VDD
Pins not available on 40-pin package PTC5 PTC6 PTD6/T2CH0 PTD7/T2CH1
Internal connection Connected to ground Connected to ground Unconnected Unconnected
Figure 1-2. 40-Pin PDIP Pin Assignments
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com
Technical Data 37
Freescale Semiconductor, Inc.
General Description
VDDA (PLL) VSSA (PLL) CGMXFC (PLL) OSC2 OSC1 RST PTC0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
PTA7/KBD7 PTA6/KBD6 PTA5/KBD5 PTA4/KBD4 PTA3/KBD3 PTA2/KBD2 PTA1/KBD1 PTA0/KBD0 VSSAD/VREFL (ADC) VDDAD/VREFH (ADC) PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 PTB1/AD1 PTB0/AD0 PTD7/T2CH1 PTD6/T2CH0 PTD5/T1CH1
Freescale Semiconductor, Inc...
PTC1 PTC2 PTC3 PTC4 PTE0/TxD PTE1/RxD IRQ PTD0/SS PTD1/MISO PTD2/MOSI PTD3/SPSCK VSS VDD PTD4/T1CH0
Pins not available on 42-pin package PTC5 PTC6
Internal connection Connected to ground Connected to ground
Figure 1-3. 42-Pin SDIP Pin Assignments
Technical Data 38
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 General Description For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
General Description Pin Functions
PTA5/KBD5
PTA4/KBD4
43
42
41
40
39
38
37
36
RST 1 PTC0 PTC1 PTC2 2 3 4 5 6 7 8 9 10
35
34 PTA2/KBD2 33 PTA1/KBD1 32 31 30 29 28 27 26 25 24 PTA0/KBD0 VSSAD/VREFL VDDAD/VREFH PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 23 PTB1/AD1 PTB0/AD0 22
PTA7/KBD7
PTA6/KBD6
44 OSC1
Freescale Semiconductor, Inc...
PTC3 PTC4 PTC5 PTC6 PTE0/TxD PTE1/RxD IRQ 11
13
14
15
16
17
18
19
20 PTD6/T2CH0
PTD0/SS 12
PTD3/SPSCK
VDD
PTD4/T1CH0
PTD5/T1CH1
Figure 1-4. 44-Pin QFP Pin Assignments
1.6 Pin Functions
Descriptions of the pin functions are provided here.
1.6.1 Power Supply Pins (VDD and VSS) VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-5 shows. Place the C1 bypass capacitor as close to the MCU as possible.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com Technical Data 39
PTD7/T2CH1
PTD1/MISO
PTD2/MOSI
VSS
21
PTA3/KBD3
CGMXFC
OSC2
VDDA
VSSA
Freescale Semiconductor, Inc.
General Description
Use a high-frequency-response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels.
MCU
VDD VSS
Freescale Semiconductor, Inc...
C1 0.1 F + C2
VDD
NOTE: Component values shown represent typical applications.
Figure 1-5. Power Supply Bypassing
1.6.2 Oscillator Pins (OSC1 and OSC2) The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit. See Section 7. Clock Generator Module (CGMC).
1.6.3 External Reset Pin (RST) A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal pullup resistor. See Section 19. System Integration Module (SIM).
1.6.4 External Interrupt Pin (IRQ) IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup resistor. See Section 12. External Interrupt (IRQ).
Technical Data 40
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 General Description For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
General Description Pin Functions
1.6.5 CGM Power Supply Pins (VDDA and VSSA) VDDA and VSSA are the power supply pins for the analog portion of the clock generator module (CGM). Connect the VDDA pin to the same voltage potential as VDD, and the VSSA pin to the same voltage potential as VSS. Decoupling of these pins should be as per the digital supply. See Section 7. Clock Generator Module (CGMC). 1.6.6 External Filter Capacitor Pin (CGMXFC)
Freescale Semiconductor, Inc...
CGMXFC is an external filter capacitor connection for the CGM. See Section 7. Clock Generator Module (CGMC). 1.6.7 ADC Power Supply/Reference Pins (VDDAD/VREFH and VSSAD/VREFL) VDDAD and VSSAD are the power supply pins for the analog-to-digital converter (ADC). Connect the VDDAD pin to the same voltage potential as VDD, and the VSSAD pin to the same voltage potential as VSS. Decoupling of these pins should be as per the digital supply. See Section 5. Analog-to-Digital Converter (ADC). VREFH is the high reference supply for the ADC, and is internally connected to VDDAD. VREFL is the low reference supply for the ADC, and is internally connected to VSSAD. 1.6.8 Port A Input/Output (I/O) Pins (PTA7/KBD7--PTA0/KBD0) PTA7-PTA0 are general-purpose, bidirectional I/O port pins. Any or all of the port A pins can be programmed to serve as keyboard interrupt pins. See Section 16. Input/Output (I/O) Ports and Section 13. Keyboard Interrupt Module (KBI). These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. 1.6.9 Port B I/O Pins (PTB7/AD7--PTB0/AD0) PTB7-PTB0 are general-purpose, bidirectional I/O port pins that can also be used for analog-to-digital converter (ADC) inputs. See Section 16. Input/Output (I/O) Ports and Section 5. Analog-to-Digital Converter (ADC).
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com Technical Data 41
Freescale Semiconductor, Inc.
General Description
1.6.10 Port C I/O Pins (PTC6--PTC0) PTC6-PTC0 are general-purpose, bidirectional I/O port pins. See Section 16. Input/Output (I/O) Ports. PTC5 and PTC6 are only available on 44-pin QFP package. These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis.
Freescale Semiconductor, Inc...
1.6.11 Port D I/O Pins (PTD7/T2CH1--PTD0/SS) PTD7-PTD0 are special-function, bidirectional I/O port pins. PTD0-PTD3 can be programmed to be serial peripheral interface (SPI) pins, while PTD4-PTD7 can be individually programmed to be timer interface module (TIM1 and TIM2) pins. See Section 22. Timer Interface Module (TIM), Section 20. Serial Peripheral Interface Module (SPI), and Section 16. Input/Output (I/O) Ports. PTD6 and PTD7 are only available on 42-SDIP and 44-pin QFP packages. These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis.
1.6.12 Port E I/O Pins (PTE1/RxD--PTE0/TxD) PTE0-PTE1 are general-purpose, bidirectional I/O port pins. These pins can also be programmed to be serial communications interface (SCI) pins. See Section 18. Serial Communications Interface Module (SCI) and Section 16. Input/Output (I/O) Ports.
NOTE:
Any unused inputs and I/O ports should be tied to an appropriate logic level (either VDD or VSS). Although the I/O ports of the MC68HC908GP32 do not require termination, termination is recommended to reduce the possibility of static damage.
Technical Data 42
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 General Description For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 2. Memory Map
2.1 Contents
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 43 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Freescale Semiconductor, Inc...
2.3 2.4 2.5
2.2 Introduction
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes: * * * * 32,256 bytes of user FLASH memory 512 bytes of random-access memory (RAM) 36 bytes of user-defined vectors 307 bytes of monitor ROM
2.3 Unimplemented Memory Locations
Accessing an unimplemented location can cause an illegal address reset. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 43
Freescale Semiconductor, Inc.
Memory Map 2.4 Reserved Memory Locations
Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R.
2.5 Input/Output (I/O) Section
Freescale Semiconductor, Inc...
Most of the control, status, and data registers are in the zero page area of $0000-$003F. Additional I/O registers have these addresses: * * * * * * * * * * * * * * * $FE00; SIM break status register, SBSR $FE01; SIM reset status register, SRSR $FE02; reserved, SUBAR $FE03; SIM break flag control register, SBFCR $FE04; interrupt status register 1, INT1 $FE05; interrupt status register 2, INT2 $FE06; interrupt status register 3, INT3 $FE07; reserved $FE08; FLASH control register, FLCR $FE09; break address register high, BRKH $FE0A; break address register low, BRKL $FE0B; break status and control register, BRKSCR $FE0C; LVI status register, LVISR $FF7E; FLASH block protect register, FLBPR $FFFF; COP control register, COPCTL
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations.
Technical Data 44
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Input/Output (I/O) Section
$0000
$003F $0040
I/O Registers 64 Bytes
$023F $0240
RAM 512 Bytes
Freescale Semiconductor, Inc...
$7FFF $8000
Unimplemented 32,192 Bytes
$FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FE0A $FE0B $FE0C $FE0D
FLASH Memory 32,256 Bytes SIM Break Status Register (SBSR) SIM Reset Status Register (SRSR) Reserved (SUBAR) SIM Break Flag Control Register (SBFCR) Interrupt Status Register 1 (INT1) Interrupt Status Register 2 (INT2) Interrupt Status Register 3 (INT3) Reserved FLASH Control Register (FLCR) Break Address Register High (BRKH) Break Address Register Low (BRKL) Break Status and Control Register (BRKSCR) LVI Status Register (LVISR) Unimplemented 3 Bytes
$FE0F
Figure 2-1. Memory Map
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 45
Freescale Semiconductor, Inc.
Memory Map
$FE10
$FE1F $FE20
Unimplemented 16 Bytes Reserved for Compatibility with Monitor Code for A-Family Parts
$FF52 $FF53
Monitor ROM 307 Bytes
Freescale Semiconductor, Inc...
$FF7D $FF7E $FF7F
Unimplemented 43 Bytes FLASH Block Protect Register (FLBPR) Unimplemented 93 Bytes
$FFDB Note: $FFF6-$FFFD reserved for 8 security bytes $FFDC
$FFFF
FLASH Vectors 36 Bytes
Figure 2-1. Memory Map (Continued)
Technical Data 46
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read: Port A Data Register Write: (PTA) Reset: Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset:
Bit 7 PTA7
6 PTA6
5 PTA5
4 PTA4
3 PTA3
2 PTA2
1 PTA1
Bit 0 PTA0
$0000
Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Unaffected by reset 0 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0
Freescale Semiconductor, Inc...
$0002
Unaffected by reset PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0
$0003
Unaffected by reset DDRA6 0 DDRB6 0 DDRC6 0 DDRD6 0 0 DDRA5 0 DDRB5 0 DDRC5 0 DDRD5 0 0 DDRA4 0 DDRB4 0 DDRC4 0 DDRD4 0 0 DDRA3 0 DDRB3 0 DDRC3 0 DDRD3 0 0 DDRA2 0 DDRB2 0 DDRC2 0 DDRD2 0 0 DDRA1 0 DDRB1 0 DDRC1 0 DDRD1 0 PTE1 DDRA0 0 DDRB0 0 DDRC0 0 DDRD0 0 PTE0
Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 Read: Data Direction Register C $0006 Write: (DDRC) Reset: 0
0
Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 Read: Port E Data Register Write: (PTE) Reset: Read: $0009 Unimplemented Write: Reset: 0 0
$0008
Unaffected by reset
0
0
0 R = Reserved
0
0 U = Unaffected
0
0
= Unimplemented
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 47
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name Read:
Bit 7
6
5
4
3
2
1
Bit 0
$000A
Unimplemented Write: Reset: Read: 0 0 0 0 0 0 0 0
$000B
Unimplemented Write: Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 DDRE1 0 0 DDRE0 0
Freescale Semiconductor, Inc...
Read: Data Direction Register E $000C Write: (DDRE) Reset:
0
0
0
0
0
0
Read: Port A Input Pullup Enable PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 $000D Register Write: (PTAPUE) Reset: 0 0 0 0 0 0 0 0 Read: Port C Input Pullup Enable $000E Register Write: (PTCPUE) Reset: 0 PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0 0 0 0 0 0 0 0
0
Read: Port D Input Pullup Enable PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0 $000F Register Write: (PTDPUE) Reset: 0 0 0 0 0 0 0 0 Read: SPI Control Register Write: (SPCR) Reset: Read: SPI Status and Control Register Write: (SPSCR) Reset: Read: SPI Data Register Write: (SPDR) Reset: SPRIE 0 SPRF DMAS SPMSTR 1 OVRF CPOL 0 MODF CPHA 1 SPTE SPWOM 0 MODFEN 0 R2 T2 SPE 0 SPR1 0 R1 T1 SPTIE 0 SPR0 0 R0 T0
$0010
0 ERRIE 0 R6 T6
$0011
0 R7 T7
0 R5 T5
0 R4 T4
1 R3 T3
$0012
Unaffected by reset ENSCI 0 TXINV 0 M 0 R = Reserved WAKE 0 ILTY 0 U = Unaffected PEN 0 PTY 0
$0013
Read: LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0
= Unimplemented
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)
Technical Data 48
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read: SCI Control Register 2 Write: (SCC2) Reset: Read: SCI Control Register 3 Write: (SCC3) Reset: Read: SCI Status Register 1 Write: (SCS1) Reset: Read: SCI Status Register 2 Write: (SCS2) Reset: Read: SCI Data Register Write: (SCDR) Reset: Read: SCI Baud Rate Register Write: (SCBR) Reset: Read: Keyboard Status and Control Register Write: (INTKBSCR) Reset:
Bit 7 SCTIE 0 R8
6 TCIE 0 T8 U TC
5 SCRIE 0 DMARE 0 SCRF
4 ILIE 0 DMATE 0 IDLE
3 TE 0 ORIE 0 OR
2 RE 0 NEIE 0 NF
1 RWU 0 FEIE 0 FE
Bit 0 SBK 0 PEIE 0 PE
$0014
$0015
U SCTE
Freescale Semiconductor, Inc...
$0016
1
1
0
0
0
0
0 BKF
0 RPF
$0017
0 R7 T7
0 R6 T6
0 R5 T5
0 R4 T4
0 R3 T3
0 R2 T2
0 R1 T1
0 R0 T0
$0018
Unaffected by reset SCP1 0 0 0 0 0 0 SCP0 0 0 R 0 KEYF SCR2 0 0 ACKK 0 KBIE7 0 TBIF 0 KBIE6 0 TBR2 0 0 0 KBIE5 0 TBR1 0 0 0 KBIE4 0 TBR0 0 0 0 KBIE3 0 0 TACK 0 IRQF 0 KBIE2 0 TBIE 0 0 ACK 0 0 0 0 R = Reserved 0 0 U = Unaffected SCR1 0 IMASKK 0 KBIE1 0 TBON 0 IMASK 0 SCR0 0 MODEK 0 KBIE0 0 R 0 MODE 0
$0019
$001A
Read: Keyboard Interrupt Enable $001B Register Write: (INTKBIER) Reset: Read: Time Base Module Control $001C Register Write: (TBCR) Reset: Read: IRQ Status and Control Register Write: (INTSCR) Reset:
0 0
$001D
= Unimplemented
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 49
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name Read: Configuration Register 2 (CONFIG2) Write: Reset:
Bit 7 0
6 0
5 0
4 0
3 0
2 0
1
Bit 0
$001E
OSCSCIBDSTOPENB SRC 0 STOP 0 PS1 0 9 0 COPD 0 PS0 0 Bit 8
0
0
0
0
0
0 SSREC 0 PS2 0 10
$001F
Read: COPRS Configuration Register 1 Write: (CONFIG1) Reset: 0 TOF 0 0 Bit 15
LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 TOIE 0 14 0 TSTOP 1 13 0 0 TRST 0 12 0 11 0 0
Freescale Semiconductor, Inc...
Read: Timer 1 Status and Control $0020 Register Write: (T1SC) Reset: Read: Timer 1 Counter Register High Write: (T1CNTH) Reset: Read: Timer 1 Counter Register Low Write: (T1CNTL) Reset: Read: Timer 1 Counter Modulo Register High Write: (T1MODH) Reset: Read: Timer 1 Counter Modulo Register Low Write: (T1MODL) Reset:
$0021
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
$0022
0 Bit 15 1 Bit 7 1 CH0F 0 0 Bit 15
0 14 1 6 1 CH0IE 0 14
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$0023
$0024
Read: Timer 1 Channel 0 Status $0025 and Control Register Write: (T1SC0) Reset: Read: Timer 1 Channel 0 Register High Write: (T1CH0H) Reset: Read: Timer 1 Channel 0 Register Low Write: (T1CH0L) Reset:
$0026
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$0027
Indeterminate after reset
One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset). = Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8)
Technical Data 50 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Input/Output (I/O) Section
Addr.
Register Name
Bit 7 CH1F 0 0 Bit 15
6 CH1IE 0 14
5 0
4 MS1A 0 12
3 ELS1B 0 11
2 ELS1A 0 10
1 TOV1 0 9
Bit 0 CH1MAX 0 Bit 8
Read: Timer 1 Channel 1 Status $0028 and Control Register Write: (T1SC1) Reset: Read: Timer 1 Channel 1 Register High Write: (T1CH1H) Reset: Read: Timer 1 Channel 1 Register Low Write: (T1CH1L) Reset:
0 13
$0029
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
$002A
Indeterminate after reset TOF 0 0 Bit 15 TOIE 0 14 TSTOP 1 13 0 TRST 0 12 0 11 0 PS2 0 10 PS1 0 9 PS0 0 Bit 8
Read: Timer 2 Status and Control $002B Register Write: (T2SC) Reset: Read: Timer 2 Counter Register High Write: (T2CNTH) Reset: Read: Timer 2 Counter Register Low Write: (T2CNTL) Reset: Read: Timer 2 Counter Modulo Register High Write: (T2MODH) Reset: Read: Timer 2 Counter Modulo Register Low Write: (T2MODL) Reset:
$002C
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
$002D
0 Bit 15 1 Bit 7 1 CH0F 0 0 Bit 15
0 14 1 6 1 CH0IE 0 14
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$002E
$002F
Read: Timer 2 Channel 0 Status $0030 and Control Register Write: (T2SC0) Reset: Read: Timer 2 Channel 0 Register High Write: (T2CH0H) Reset:
$0031
Indeterminate after reset = Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 51
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name Read: Timer 2 Channel 0 Register Low Write: (T2CH0L) Reset:
Bit 7 Bit 7
6 6
5 5
4 4
3 3
2 2
1 1
Bit 0 Bit 0
$0032
Indeterminate after reset CH1F 0 0 Bit 15 CH1IE 0 14 0 MS1A 0 12 ELS1B 0 11 ELS1A 0 10 TOV1 0 9 CH1MAX 0 Bit 8
Read: Timer 2 Channel 1 Status $0033 and Control Register Write: (T2SC1) Reset: Read: Timer 2 Channel 1 Register High Write: (T2CH1H) Reset: Read: Timer 2 Channel 1 Register Low Write: (T2CH1L) Reset: Read: PLL Control Register Write: (PCTL) Reset: Read: PLL Bandwidth Control Register Write: (PBWC) Reset:
0 13
Freescale Semiconductor, Inc...
$0034
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$0035
Indeterminate after reset PLLIE 0 AUTO 0 0 PLLF PLLON 1 ACQ 0 0 BCS 0 0 PRE1 0 0 PRE0 0 0 VPR1 0 0 VPR0 0 R 0 MUL8 0 MUL0 0 VRS0 0 RDS0 1
$0036
0 LOCK
$0037
0 0
0 0
0 MUL11 0 MUL3 0 VRS3 0 RDS3 0
0 MUL10 0 MUL2 0 VRS2 0 RDS2 0 U = Unaffected
0 MUL9 0 MUL1 0 VRS1 0 RDS1 0
Read: PLL Multiplier Select High $0038 Register Write: (PMSH) Reset: Read: PLL Multiplier Select Low $0039 Register Write: (PMSL) Reset: Read: PLL VCO Range Select Register Write: (PMRS) Reset: Read: PLL Reference Divider Select Register Write: (PMDS) Reset:
0 MUL7 0 VRS7 0 0
0 MUL6 1 VRS6 1 0
0 MUL5 0 VRS5 0 0
0 MUL4 0 VRS4 0 0
$003A
$003B
0
0
0
0 R = Reserved
= Unimplemented
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)
Technical Data 52
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Input/Output (I/O) Section
Addr.
Register Name Read: Analog-to-Digital Status and Control Register Write: (ADSCR) Reset: Read: Analog-to-Digital Data Register Write: (ADR) Reset: Read: Analog-to-Digital Clock Register Write: (ADCLK) Reset: Read:
Bit 7 COCO 0 AD7
6 AIEN 0 AD6
5 ADCO 0 AD5
4 ADCH4 1 AD4
3 ADCH3 1 AD3
2 ADCH2 1 AD2
1 ADCH1 1 AD1
Bit 0 ADCH0 1 AD0
$003C
$003D
0 ADIV2 0
0 ADIV1 0
0 ADIV0 0
0 ADICLK 0
0 0
0 0
0 0
0 0
Freescale Semiconductor, Inc...
$003E
0
0
0
0
$003F
Unimplemented Write: Reset:
Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: Read: SIM Upper Byte Address $FE02 Register Write: (SUBAR) Reset: Read: SIM Break Flag Control Register Write: (SBFCR) Reset:
R
R
R
R
R
R
SBSW Note 0
R
POR
PIN
COP
ILOP
ILAD
MODRST
LVI
0
1 R
0 R
0 R
0 R
0 R
0 R
0 R
0 R
$FE03
BCFE 0 IF6 R 0 IF14 R 0
R
R
R
R
R
R
R
Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset:
IF5 R 0 IF13 R 0
IF4 R 0 IF12 R 0
IF3 R 0 IF11 R 0 R = Reserved
IF2 R 0 IF10 R 0
IF1 R 0 IF9 R 0 U = Unaffected
0 R 0 IF8 R 0
0 R 0 IF7 R 0
= Unimplemented
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com Technical Data 53
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name
Bit 7 0 R 0 R 0 0
6 0 R 0 R 0 0
5 0 R 0 R 0 0
4 0 R 0 R 0 0
3 0 R 0 R 0 HVEN 0 11 0 3 0 0
2 0 R 0 R 0 MASS 0 10 0 2 0 0
1 IF16 R 0 R 0 ERASE 0 9 0 1 0 0
Bit 0 IF15 R 0 R 0 PGM 0 Bit 8 0 Bit 0 0 0
Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset: Read: $FE07 Reserved Write: Reset: Read: FLASH Control Register Write: (FLCR) Reset: Read: Break Address Register High Write: (BRKH) Reset: Read: Break Address Register Low Write: (BRKL) Reset:
Freescale Semiconductor, Inc...
$FE08
0 Bit 15 0 Bit 7 0 BRKE 0
0 14 0 6 0 BRKA 0 0
0 13 0 5 0 0
0 12 0 4 0 0
$FE09
$FE0A
Read: Break Status and Control $FE0B Register Write: (BRKSCR) Reset:
0 0
0 0
0 0
0 0
0 0
0 0
$FE0C
Read: LVIOUT LVI Status Register Write: (LVISR) Reset: 0 Read: FLASH Block Protect Register Write: (FLBPR) Reset: Read: COP Control Register Write: (COPCTL) Reset: BPR7 U
0 BPR6 U
0 BPR5 U
0 BPR4 U
0 BPR3 U
0 BPR2 U
0 BPR1 U
0 BPR0 U
$FF7E
Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset
$FFFF
Non-volatile FLASH register = Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)
Technical Data 54
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Input/Output (I/O) Section
Table 2-1. Vector Addresses
Vector Priority Lowest Vector IF16 IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 -- -- Address $FFDC $FFDD $FFDE $FFDF $FFE0 $FFE1 $FFE2 $FFE3 $FFE4 $FFE5 $FFE6 $FFE7 $FFE8 $FFE9 $FFEA $FFEB $FFEC $FFED $FFEE $FFEF $FFF0 $FFF1 $FFF2 $FFF3 $FFF4 $FFF5 $FFF6 $FFF7 $FFF8 $FFF9 $FFFA $FFFB $FFFC $FFFD $FFFE $FFFF Vector Timebase Vector (High) Timebase Vector (Low) ADC Conversion Complete Vector (High) ADC Conversion Complete Vector (Low) Keyboard Vector (High) Keyboard Vector (Low) SCI Transmit Vector (High) SCI Transmit Vector (Low) SCI Receive Vector (High) SCI Receive Vector (Low) SCI Error Vector (High) SCI Error Vector (Low) SPI Transmit Vector (High) SPI Transmit Vector (Low) SPI Receive Vector (High) SPI Receive Vector (Low) TIM2 Overflow Vector (High) TIM2 Overflow Vector (Low) TIM2 Channel 1 Vector (High) TIM2 Channel 1 Vector (Low) TIM2 Channel 0 Vector (High) TIM2 Channel 0 Vector (Low) TIM1 Overflow Vector (High) TIM1 Overflow Vector (Low) TIM1 Channel 1 Vector (High) TIM1 Channel 1 Vector (Low) TIM1 Channel 0 Vector (High) TIM1 Channel 0 Vector (Low) PLL Vector (High) PLL Vector (Low) IRQ Vector (High) IRQ Vector (Low) SWI Vector (High) SWI Vector (Low) Reset Vector (High) Reset Vector (Low) Technical Data 55
.
Freescale Semiconductor, Inc...
Highest MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA
Memory Map For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Memory Map
Freescale Semiconductor, Inc...
Technical Data 56
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 3. Low-Power Modes
3.1 Contents
Freescale Semiconductor, Inc...
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7 Computer Operating Properly Module (COP). . . . . . . . . . . . . . 61 3.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.8 External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . 62 3.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.9 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . 62 3.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . . 63 3.10.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Power Modes For More Information On This Product, Go to: www.freescale.com Technical Data 57
Freescale Semiconductor, Inc.
Low-Power Modes
3.10.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.11 Serial Communications Interface Module (SCI) . . . . . . . . . . . . 63 3.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . 64 3.12.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.12.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Freescale Semiconductor, Inc...
3.13 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . 64 3.13.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.13.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.14.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.14.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.15 3.16 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Introduction
The MCU may enter two low-power modes: wait mode and stop mode. They are common to all HC08 MCUs and are entered through instruction execution. This section describes how each module acts in the lowpower modes.
3.2.1 Wait Mode The WAIT instruction puts the MCU in a low-power standby mode in which the CPU clock is disabled but the bus clock continues to run. Power consumption can be further reduced by disabling the LVI module and/or the timebase module through bits in the CONFIG register. (See Section 8. Configuration Register (CONFIG).)
Technical Data 58
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Power Modes For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Low-Power Modes Analog-to-Digital Converter (ADC)
3.2.2 Stop Mode Stop mode is entered when a STOP instruction is executed. The CPU clock is disabled and the bus clock is disabled if the OSCSTOPENB bit in the CONFIG register is at a logic 0. (See Section 8. Configuration Register (CONFIG).)
3.3 Analog-to-Digital Converter (ADC)
Freescale Semiconductor, Inc...
3.3.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4-ADCH0 bits in the ADC status and control register before executing the WAIT instruction.
3.3.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry.
3.4 Break Module (BRK)
3.4.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if the SBSW bit in the break status register is set.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Power Modes For More Information On This Product, Go to: www.freescale.com
Technical Data 59
Freescale Semiconductor, Inc.
Low-Power Modes
3.4.2 Stop Mode The break module is inactive in stop mode. A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. The STOP instruction does not affect break module register states.
3.5 Central Processor Unit (CPU)
Freescale Semiconductor, Inc...
3.5.1 Wait Mode The WAIT instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
3.5.2 Stop Mode The STOP instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.
3.6 Clock Generator Module (CGM)
3.6.1 Wait Mode The CGM remains active in wait mode. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive
Technical Data 60 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Power Modes For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Low-Power Modes Computer Operating Properly Module (COP)
applications can disengage the PLL without turning it off. Applications that require the PLL to wake the MCU from wait mode also can deselect the PLL output without turning off the PLL.
3.6.2 Stop Mode If the OSCSTOPEN bit in the CONFIG register is cleared (default), then the STOP instruction disables the CGM (oscillator and phase-locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and CGMINT). If the STOP instruction is executed with the VCO clock, CGMVCLK, divided by two driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the crystal clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the crystal clock divided by two drives CGMOUT and BCS remains clear. If the OSCSTOPEN bit in the CONFIG register is set, then the phase locked loop is shut off but the oscillator will continue to operate in stop mode.
Freescale Semiconductor, Inc...
3.7 Computer Operating Properly Module (COP)
3.7.1 Wait Mode The COP remains active in wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine.
3.7.2 Stop Mode Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Power Modes For More Information On This Product, Go to: www.freescale.com
Technical Data 61
Freescale Semiconductor, Inc.
Low-Power Modes
The STOP bit in the configuration register (CONFIG) enables the STOP instruction. To prevent inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by clearing the STOP bit.
3.8 External Interrupt Module (IRQ)
3.8.1 Wait Mode
Freescale Semiconductor, Inc...
The IRQ module remains active in wait mode. Clearing the IMASK bit in the IRQ status and control register enables IRQ CPU interrupt requests to bring the MCU out of wait mode.
3.8.2 Stop Mode The IRQ module remains active in stop mode. Clearing the IMASK bit in the IRQ status and control register enables IRQ CPU interrupt requests to bring the MCU out of stop mode.
3.9 Keyboard Interrupt Module (KBI)
3.9.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.
3.9.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.
Technical Data 62
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Power Modes For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Low-Power Modes Low-Voltage Inhibit Module (LVI)
3.10 Low-Voltage Inhibit Module (LVI)
3.10.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode.
Freescale Semiconductor, Inc...
3.10.2 Stop Mode If enabled, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode.
3.11 Serial Communications Interface Module (SCI)
3.11.1 Wait Mode The SCI module remains active in wait mode. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction.
3.11.2 Stop Mode The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. SCI module operation resumes after the MCU exits stop mode. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Power Modes For More Information On This Product, Go to: www.freescale.com
Technical Data 63
Freescale Semiconductor, Inc.
Low-Power Modes 3.12 Serial Peripheral Interface Module (SPI)
3.12.1 Wait Mode The SPI module remains active in wait mode. Any enabled CPU interrupt request from the SPI module can bring the MCU out of wait mode. If SPI module functions are not required during wait mode, reduce power consumption by disabling the SPI module before executing the WAIT instruction.
Freescale Semiconductor, Inc...
3.12.2 Stop Mode The SPI module is inactive in stop mode. The STOP instruction does not affect SPI register states. SPI operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is aborted, and the SPI is reset.
3.13 Timer Interface Module (TIM1 and TIM2)
3.13.1 Wait Mode The TIM remains active in wait mode. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.
3.13.2 Stop Mode The TIM is inactive in stop mode. The STOP instruction does not affect register states or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.
Technical Data 64
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Power Modes For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Low-Power Modes Timebase Module (TBM)
3.14 Timebase Module (TBM)
3.14.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction.
Freescale Semiconductor, Inc...
3.14.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the OSCSTOPEN bit in the CONFIG register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction.
3.15 Exiting Wait Mode
These events restart the CPU clock and load the program counter with the reset vector or with an interrupt vector: * External reset -- A logic 0 on the RST pin resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Power Modes For More Information On This Product, Go to: www.freescale.com
Technical Data 65
Freescale Semiconductor, Inc.
Low-Power Modes
* External interrupt -- A high-to-low transition on an external interrupt pin (IRQ pin) loads the program counter with the contents of locations: $FFFA and $FFFB; IRQ pin. Break interrupt -- A break interrupt loads the program counter with the contents of $FFFC and $FFFD. Computer operating properly module (COP) reset -- A timeout of the COP counter resets the MCU and loads the program counter with the contents of $FFFE and $FFFF. Low-voltage inhibit module (LVI) reset -- A power supply voltage below the Vtripf voltage resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF. Clock generator module (CGM) interrupt -- A CPU interrupt request from the phase-locked loop (PLL) loads the program counter with the contents of $FFF8 and $FFF9. Keyboard module (KBI) interrupt -- A CPU interrupt request from the KBI module loads the program counter with the contents of $FFE0 and $FFE1. Timer 1 interface module (TIM1) interrupt -- A CPU interrupt request from the TIM1 loads the program counter with the contents of: - $FFF2 and $FFF3; TIM1 overflow - $FFF4 and $FFF5; TIM1 channel 1 - $FFF6 and $FFF7; TIM1 channel 0 * Timer 2 interface module (TIM2) interrupt -- A CPU interrupt request from the TIM2 loads the program counter with the contents of: - $FFEC and $FFED; TIM2 overflow - $FFEE and $FFEF; TIM2 channel 1 - $FFF0 and $FFF1; TIM2 channel 0 * Serial peripheral interface module (SPI) interrupt -- A CPU interrupt request from the SPI loads the program counter with the contents of:
* *
Freescale Semiconductor, Inc...
*
*
*
*
Technical Data 66
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Power Modes For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Low-Power Modes Exiting Stop Mode
- $FFE8 and $FFE9; SPI transmitter - $FFEA and $FFEB; SPI receiver * Serial communications interface module (SCI) interrupt -- A CPU interrupt request from the SCI loads the program counter with the contents of: - $FFE2 and $FFE3; SCI transmitter - $FFE4 and $FFE5; SCI receiver
Freescale Semiconductor, Inc...
- $FFE6 and $FFE7; SCI receiver error * Analog-to-digital converter module (ADC) interrupt -- A CPU interrupt request from the ADC loads the program counter with the contents of: $FFDE and $FFDF; ADC conversion complete. Timebase module (TBM) interrupt -- A CPU interrupt request from the TBM loads the program counter with the contents of: $FFDC and $FFDD; TBM interrupt.
*
3.16 Exiting Stop Mode
These events restart the system clocks and load the program counter with the reset vector or with an interrupt vector: * External reset -- A logic 0 on the RST pin resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF. External interrupt -- A high-to-low transition on an external interrupt pin loads the program counter with the contents of locations: - $FFFA and $FFFB; IRQ pin - $FFE0 and $FFE1; keyboard interrupt pins * Low-voltage inhibit (LVI) reset -- A power supply voltage below the LVItripf voltage resets the MCU and loads the program counter with the contents of locations $FFFE and $FFFF. Break interrupt -- A break interrupt loads the program counter with the contents of locations $FFFC and $FFFD.
*
*
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Power Modes For More Information On This Product, Go to: www.freescale.com
Technical Data 67
Freescale Semiconductor, Inc.
Low-Power Modes
* Timebase module (TBM) interrupt -- A TBM interrupt loads the program counter with the contents of locations $FFDC and $FFDD when the timebase counter has rolled over. This allows the TBM to generate a periodic wakeup from stop mode.
Upon exit from stop mode, the system clocks begin running after an oscillator stabilization delay. A 12-bit stop recovery counter inhibits the system clocks for 4096 CGMXCLK cycles after the reset or external interrupt.
Freescale Semiconductor, Inc...
The short stop recovery bit, SSREC, in the configuration register controls the oscillator stabilization delay during stop recovery. Setting SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32 CGMXCLK cycles.
NOTE:
Use the full stop recovery time (SSREC = 0) in applications that use an external crystal.
Technical Data 68
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Power Modes For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 4. Resets and Interrupts
4.1 Contents
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Freescale Semiconductor, Inc...
4.3 Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.3.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.3.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.3 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.3.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.3.2 COP Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.3 Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.4 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.3.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.4 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 4.4.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.2.1 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.2 Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.3 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.4 CGM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.5 TIM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2.6 TIM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.2.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4.2.8 SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.2.9 KBD0-KBD7 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.2.10 ADC (Analog-to-Digital Converter). . . . . . . . . . . . . . . . . . 83 4.4.2.11 TBM (Timebase Module) . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.3 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.3.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.3.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . 86
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com Technical Data 69
Freescale Semiconductor, Inc.
Resets and Interrupts 4.2 Introduction
Resets and interrupts are responses to exceptional events during program execution. A reset re-initializes the MCU to its startup condition. An interrupt vectors the program counter to a service routine.
4.3 Resets
Freescale Semiconductor, Inc...
A reset immediately returns the MCU to a known startup condition and begins program execution from a user-defined memory location.
4.3.1 Effects A reset: * * * * Immediately stops the operation of the instruction being executed Initializes certain control and status bits Loads the program counter with a user-defined reset vector address from locations $FFFE and $FFFF Selects CGMXCLK divided by four as the bus clock
4.3.2 External Reset A logic 0 applied to the RST pin for a time, tIRL, generates an external reset. An external reset sets the PIN bit in the SIM reset status register.
Technical Data 70
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Resets and Interrupts Resets
4.3.3 Internal Reset Sources: * * * * * Power-on reset (POR) Computer operating properly (COP) Low-power reset circuits Illegal opcode Illegal address
Freescale Semiconductor, Inc...
All internal reset sources pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external devices. The MCU is held in reset for an additional 32 CGMXCLK cycles after releasing the RST pin.
PULLED LOW BY MCU RST PIN 32 CYCLES CGMXCLK INTERNAL RESET 32 CYCLES
Figure 4-1. Internal Reset Timing
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Technical Data 71
Freescale Semiconductor, Inc.
Resets and Interrupts
4.3.3.1 Power-On Reset
A power-on reset (POR) is an internal reset caused by a positive transition on the VDD pin. VDD at the POR must go completely to 0 V to reset the MCU. This distinguishes between a reset and a POR. The POR is not a brown-out detector, low-voltage detector, or glitch detector. A power-on reset: * Holds the clocks to the CPU and modules inactive for an oscillator stabilization delay of 4096 CGMXCLK cycles Drives the RST pin low during the oscillator stabilization delay Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator stabilization delay Sets the POR and LP bits in the SIM reset status register and clears all other bits in the register
Freescale Semiconductor, Inc...
* * * *
OSC1 PORRST(1) 4096 CYCLES CGMXCLK CGMOUT RST PIN INTERNAL RESET 1. PORRST is an internally generated power-on reset pulse. 32 CYCLES 32 CYCLES
Figure 4-2. Power-On Reset Recovery
Technical Data 72
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Resets and Interrupts Resets
4.3.3.2 COP Reset
A COP reset is an internal reset caused by an overflow of the COP counter. A COP reset sets the COP bit in the system integration module (SIM) reset status register. To clear the COP counter and prevent a COP reset, write any value to the COP control register at location $FFFF.
4.3.3.3 Low-Voltage Inhibit Reset
Freescale Semiconductor, Inc...
A low-voltage inhibit (LVI) reset is an internal reset caused by a drop in the power supply voltage to the LVItripf voltage. An LVI reset: * Holds the clocks to the CPU and modules inactive for an oscillator stabilization delay of 4096 CGMXCLK cycles after the power supply voltage rises to the LVItripr voltage Drives the RST pin low for as long as VDD is below the LVItripr voltage and during the oscillator stabilization delay Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator stabilization delay Sets the LVI bit in the SIM reset status register
* * * *
4.3.3.4 Illegal Opcode Reset
An illegal opcode reset is an internal reset caused by an opcode that is not in the instruction set. An illegal opcode reset sets the ILOP bit in the SIM reset status register. If the stop enable bit, STOP, in the mask option register is a logic 0, the STOP instruction causes an illegal opcode reset.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Technical Data 73
Freescale Semiconductor, Inc.
Resets and Interrupts
4.3.3.5 Illegal Address Reset
An illegal address reset is an internal reset caused by opcode fetch from an unmapped address. An illegal address reset sets the ILAD bit in the SIM reset status register. A data fetch from an unmapped address does not generate a reset.
4.3.4 SIM Reset Status Register
Freescale Semiconductor, Inc...
This read-only register contains flags to show reset sources. All flag bits are automatically cleared following a read of the register. Reset service can read the SIM reset status register to clear the register after poweron reset and to determine the source of any subsequent reset. The register is initialized on power-up as shown with the POR bit set and all other bits cleared. During a POR or any other internal reset, the RST pin is pulled low. After the pin is released, it will be sampled 32 CGMXCLK cycles later. If the pin is not above a VIH at that time, then the PIN bit in the SRSR may be set in addition to whatever other bits are set.
NOTE:
Only a read of the SIM reset status register clears all reset flags. After multiple resets from different sources without reading the register, multiple flags remain set.
Address: $FE01 Bit 7 Read: Write: POR: 1 0 0 0 0 0 0 0 POR 6 PIN 5 COP 4 ILOP 3 ILAD 2 MODRST 1 LVI Bit 0 0
= Unimplemented
Figure 4-3. SIM Reset Status Register (SRSR) POR -- Power-On Reset Flag 1 = Power-on reset since last read of SRSR 0 = Read of SRSR since last power-on reset
Technical Data 74
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Resets and Interrupts Interrupts
PIN -- External Reset Flag 1 = External reset via RST pin since last read of SRSR 0 = POR or read of SRSR since last external reset COP -- Computer Operating Properly Reset Bit 1 = Last reset caused by timeout of COP counter 0 = POR or read of SRSR ILOP -- Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD -- Illegal Address Reset Bit 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR MODRST -- Monitor Mode Entry Module Reset Bit 1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after POR while IRQ = VDD 0 = POR or read of SRSR LVI -- Low-Voltage Inhibit Reset Bit 1 = Last reset caused by low-power supply voltage 0 = POR or read of SRSR
Freescale Semiconductor, Inc...
4.4 Interrupts
An interrupt temporarily changes the sequence of program execution to respond to a particular event. An interrupt does not stop the operation of the instruction being executed, but begins when the current instruction completes its operation.
4.4.1 Effects An interrupt: * Saves the CPU registers on the stack. At the end of the interrupt, the RTI instruction recovers the CPU registers from the stack so that normal processing can resume.
Technical Data 75
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Resets and Interrupts
* Sets the interrupt mask (I bit) to prevent additional interrupts. Once an interrupt is latched, no other interrupt can take precedence, regardless of its priority. Loads the program counter with a user-defined vector address
*
*
Freescale Semiconductor, Inc...
* *
5 4 STACKING 3 ORDER 2 1
CONDITION CODE REGISTER ACCUMULATOR INDEX REGISTER (LOW BYTE)* PROGRAM COUNTER (HIGH BYTE) PROGRAM COUNTER (LOW BYTE)
1 2 3 UNSTACKING ORDER 4 5
* * *
$00FF DEFAULT ADDRESS ON RESET *High byte of index register is not stacked.
Figure 4-4. Interrupt Stacking Order After every instruction, the CPU checks all pending interrupts if the I bit is not set. If more than one interrupt is pending when an instruction is done, the highest priority interrupt is serviced first. In the example shown in Figure 4-5, if an interrupt is pending upon exit from the interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.
Technical Data 76
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Resets and Interrupts Interrupts
CLI LDA #$FF BACKGROUND ROUTINE
INT1
PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI
Freescale Semiconductor, Inc...
INT2
PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI
Figure 4-5. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.
NOTE:
To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, save the H register and then restore it prior to exiting the routine.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Technical Data 77
Freescale Semiconductor, Inc.
Resets and Interrupts
FROM RESET
BREAK INTERRUPT ? NO YES
YES
BIT SET? IIBIT SET? NO IRQ INTERRUPT ? NO CGM INTERRUPT ? NO YES
Freescale Semiconductor, Inc...
YES
OTHER INTERRUPTS ? NO
YES
STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR
FETCH NEXT INSTRUCTION
SWI INSTRUCTION ? NO RTI INSTRUCTION ? NO
YES
YES
UNSTACK CPU REGISTERS
EXECUTE INSTRUCTION
Figure 4-6. Interrupt Processing
Technical Data 78
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Resets and Interrupts Interrupts
4.4.2 Sources The sources in Table 4-1 can generate CPU interrupt requests. Table 4-1. Interrupt Sources
INT Register Flag Priority(2)
Reset
None None IRQF PLLF CH0F CH1F TOF CH0F CH1F TOF SPRF OVRF MODF SPTE OR NF FE PE SCRF IDLE SCTE TC KEYF COCO TBIF
None None IMASK PLLIE CH0IE CH1IE TOIE CH0IE CH1IE TOIE SPRIE ERRIE ERRIE SPTIE ORIE NEIE FEIE PEIE SCRIE ILIE SCTIE TCIE IMASKK AIEN TBIE
None None IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IF10
0 0 1 2 3 4 5 6 7 8 9 10
$FFFE-$FFFF $FFFC-$FFFD $FFFA-$FFFB $FFF8-$FFF9 $FFF6-$FFF7 $FFF4-$FFF5 $FFF2-$FFF3 $FFF0-$FFF1 $FFEE-$FFEF $FFEC-$FFED $FFEA-$FFEB $FFE8-$FFE9
Freescale Semiconductor, Inc...
SWI instruction IRQ pin CGM (PLL) TIM1 channel 0 TIM1 channel 1 TIM1 overflow TIM2 channel 0 TIM2 channel 1 TIM2 overflow SPI receiver full SPI overflow SPI mode fault SPI transmitter empty SCI receiver overrun SCI noise fag SCI framing error SCI parity error SCI receiver full SCI input idle SCI transmitter empty SCI transmission complete Keyboard pin ADC conversion complete Timebase Note:
IF11
11
$FFE6-$FFE7
IF12 IF13 IF14 IF15 IF16
12 13 14 15 16
$FFE4-$FFE5 $FFE2-$FFE3 $FFE0-$FFE1 $FFDE-$FFDF $FFDC-$FFDD
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. 0 = highest priority
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Technical Data 79
Vector Address
Mask(1)
Source
Flag
Freescale Semiconductor, Inc.
Resets and Interrupts
4.4.2.1 SWI Instruction
The software interrupt instruction (SWI) causes a non-maskable interrupt.
NOTE:
A software interrupt pushes PC onto the stack. An SWI does not push PC - 1, as a hardware interrupt does.
4.4.2.2 Break Interrupt
Freescale Semiconductor, Inc...
The break module causes the CPU to execute an SWI instruction at a software-programmable break point.
4.4.2.3 IRQ Pin
A logic 0 on the IRQ pin latches an external interrupt request.
4.4.2.4 CGM
The CGM can generate a CPU interrupt request every time the phaselocked loop circuit (PLL) enters or leaves the locked state. When the LOCK bit changes state, the PLL flag (PLLF) is set. The PLL interrupt enable bit (PLLIE) enables PLLF CPU interrupt requests. LOCK is in the PLL bandwidth control register. PLLF is in the PLL control register.
4.4.2.5 TIM1
TIM1 CPU interrupt sources: * TIM1 overflow flag (TOF) -- The TOF bit is set when the TIM1 counter reaches the modulo value programmed in the TIM1 counter modulo registers. The TIM1 overflow interrupt enable bit, TOIE, enables TIM1 overflow CPU interrupt requests. TOF and TOIE are in the TIM1 status and control register. TIM1 channel flags (CH1F-CH0F) -- The CHxF bit is set when an input capture or output compare occurs on channel x. The channel x interrupt enable bit, CHxIE, enables channel x TIM1 CPU interrupt requests. CHxF and CHxIE are in the TIM1 channel x status and control register.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
*
Technical Data 80
Freescale Semiconductor, Inc.
Resets and Interrupts Interrupts
4.4.2.6 TIM2
TIM2 CPU interrupt sources: * TIM2 overflow flag (TOF) -- The TOF bit is set when the TIM2 counter reaches the modulo value programmed in the TIM2 counter modulo registers. The TIM2 overflow interrupt enable bit, TOIE, enables TIM2 overflow CPU interrupt requests. TOF and TOIE are in the TIM2 status and control register. TIM2 channel flags (CH1F-CH0F) -- The CHxF bit is set when an input capture or output compare occurs on channel x. The channel x interrupt enable bit, CHxIE, enables channel x TIM2 CPU interrupt requests. CHxF and CHxIE are in the TIM2 channel x status and control register.
*
Freescale Semiconductor, Inc...
4.4.2.7 SPI
SPI CPU interrupt sources: * SPI receiver full bit (SPRF) -- The SPRF bit is set every time a byte transfers from the shift register to the receive data register. The SPI receiver interrupt enable bit, SPRIE, enables SPRF CPU interrupt requests. SPRF is in the SPI status and control register and SPRIE is in the SPI control register. SPI transmitter empty (SPTE) -- The SPTE bit is set every time a byte transfers from the transmit data register to the shift register. The SPI transmit interrupt enable bit, SPTIE, enables SPTE CPU interrupt requests. SPTE is in the SPI status and control register and SPTIE is in the SPI control register. Mode fault bit (MODF) -- The MODF bit is set in a slave SPI if the SS pin goes high during a transmission with the mode fault enable bit (MODFEN) set. In a master SPI, the MODF bit is set if the SS pin goes low at any time with the MODFEN bit set. The error interrupt enable bit, ERRIE, enables MODF CPU interrupt requests. MODF, MODFEN, and ERRIE are in the SPI status and control register.
*
*
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Technical Data 81
Freescale Semiconductor, Inc.
Resets and Interrupts
* Overflow bit (OVRF) -- The OVRF bit is set if software does not read the byte in the receive data register before the next full byte enters the shift register. The error interrupt enable bit, ERRIE, enables OVRF CPU interrupt requests. OVRF and ERRIE are in the SPI status and control register.
4.4.2.8 SCI
SCI CPU interrupt sources:
Freescale Semiconductor, Inc...
*
SCI transmitter empty bit (SCTE) -- SCTE is set when the SCI data register transfers a character to the transmit shift register. The SCI transmit interrupt enable bit, SCTIE, enables transmitter CPU interrupt requests. SCTE is in SCI status register 1. SCTIE is in SCI control register 2. Transmission complete bit (TC) -- TC is set when the transmit shift register and the SCI data register are empty and no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, enables transmitter CPU interrupt requests. TC is in SCI status register 1. TCIE is in SCI control register 2. SCI receiver full bit (SCRF) -- SCRF is set when the receive shift register transfers a character to the SCI data register. The SCI receive interrupt enable bit, SCRIE, enables receiver CPU interrupts. SCRF is in SCI status register 1. SCRIE is in SCI control register 2. Idle input bit (IDLE) -- IDLE is set when 10 or 11 consecutive logic 1s shift in from the RxD pin. The idle line interrupt enable bit, ILIE, enables IDLE CPU interrupt requests. IDLE is in SCI status register 1. ILIE is in SCI control register 2. Receiver overrun bit (OR) -- OR is set when the receive shift register shifts in a new character before the previous character was read from the SCI data register. The overrun interrupt enable bit, ORIE, enables OR to generate SCI error CPU interrupt requests. OR is in SCI status register 1. ORIE is in SCI control register 3.
*
*
*
*
Technical Data 82
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Resets and Interrupts Interrupts
*
Noise flag (NF) -- NF is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, enables NF to generate SCI error CPU interrupt requests. NF is in SCI status register 1. NEIE is in SCI control register 3. Framing error bit (FE) -- FE is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, enables FE to generate SCI error CPU interrupt requests. FE is in SCI status register 1. FEIE is in SCI control register 3. Parity error bit (PE) -- PE is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, enables PE to generate SCI error CPU interrupt requests. PE is in SCI status register 1. PEIE is in SCI control register 3.
*
Freescale Semiconductor, Inc...
*
4.4.2.9 KBD0--KBD7 Pins
A logic 0 on a keyboard interrupt pin latches an external interrupt request.
4.4.2.10 ADC (Analog-to-Digital Converter)
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. The COCO bit is not used as a conversion complete flag when interrupts are enabled.
4.4.2.11 TBM (Timebase Module)
The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2-TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. Interrupts must be acknowledged by writing a logic 1 to the TACK bit.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Technical Data 83
Freescale Semiconductor, Inc.
Resets and Interrupts
4.4.3 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 4-2 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 4-2. Interrupt Source Flags
Interrupt Source Interrupt Status Register Flag -- -- IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IF10 IF11 IF12 IF13 IF14 IF15 IF16
Freescale Semiconductor, Inc...
Reset SWI instruction IRQ pin CGM (PLL) TIM1 channel 0 TIM1 channel 1 TIM1 overflow TIM2 channel 0 TIM2 channel 1 TIM2 overflow SPI receive SPI transmit SCI error SCI receive SCI transmit Keyboard ADC conversion complete Timebase
Technical Data 84
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Resets and Interrupts Interrupts
4.4.3.1 Interrupt Status Register 1
Address: $FE04 Bit 7 Read: Write: Reset: IF6 R 0 R = Reserved 6 IF5 R 0 5 IF4 R 0 4 IF3 R 0 3 IF2 R 0 2 IF1 R 0 1 0 R 0 Bit 0 0 R 0
Freescale Semiconductor, Inc...
Figure 4-7. Interrupt Status Register 1 (INT1) IF6-IF1 -- Interrupt Flags 6-1 These flags indicate the presence of interrupt requests from the sources shown in Table 4-2. 1 = Interrupt request present 0 = No interrupt request present Bit 1 and Bit 0 -- Always read 0
4.4.3.2 Interrupt Status Register 2
Address: $FE05 Bit 7 Read: Write: Reset: IF14 R 0 R = Reserved 6 IF13 R 0 5 IF12 R 0 4 IF11 R 0 3 IF10 R 0 2 IF9 R 0 1 IF8 R 0 Bit 0 IF7 R 0
Figure 4-8. Interrupt Status Register 2 (INT2) IF14-IF7 -- Interrupt Flags 14-7 These flags indicate the presence of interrupt requests from the sources shown in Table 4-2. 1 = Interrupt request present 0 = No interrupt request present
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Resets and Interrupts For More Information On This Product, Go to: www.freescale.com
Technical Data 85
Freescale Semiconductor, Inc.
Resets and Interrupts
4.4.3.3 Interrupt Status Register 3
Address: $FE06 Bit 7 Read: Write: Reset: 0 R 0 R = Reserved 6 0 R 0 5 0 R 0 4 0 R 0 3 0 R 0 2 0 R 0 1 IF16 R 0 Bit 0 IF15 R 0
Freescale Semiconductor, Inc...
Figure 4-9. Interrupt Status Register 3 (INT3) IF16-IF15 -- Interrupt Flags 16-15 This flag indicates the presence of an interrupt request from the source shown in Table 4-2. 1 = Interrupt request present 0 = No interrupt request present Bits 7-2 -- Always read 0
Technical Data 86
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Resets and Interrupts For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 5. Analog-to-Digital Converter (ADC)
5.1 Contents
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Freescale Semiconductor, Inc...
5.3
5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.7.1 ADC Analog Power Pin (VDDAD)/ ADC Voltage Reference High Pin (VREFH) . . . . . . . . . . . 92 5.7.2 ADC Analog Ground Pin (VSSAD)/ ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . 92 5.7.3 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . 93 5.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 87
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) 5.2 Introduction
This section describes the 8-bit analog-to-digital converter (ADC).
5.3 Features
Features of the ADC module include: * Eight channels with multiplexed input Linear successive approximation with monotonicity 8-bit resolution Single or continuous conversion Conversion complete flag or conversion complete interrupt Selectable ADC clock
Freescale Semiconductor, Inc...
* * * * *
5.4 Functional Description
The ADC provides eight pins for sampling external sources at pins PTB7/AD7-PTB0/AD0. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in (VADIN). VADIN is converted by the successive approximation registerbased analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. (See Figure 5-1.)
Technical Data 88
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) Functional Description
INTERNAL DATA BUS READ DDRBx WRITE DDRBx RESET WRITE PTBx DDRBx PTBx PTBx ADC CHANNEL x DISABLE
READ PTBx
Freescale Semiconductor, Inc...
DISABLE ADC DATA REGISTER
CONVERSION INTERRUPT COMPLETE LOGIC
ADC
ADC VOLTAGE IN (VADIN) CHANNEL SELECT
ADCH4-ADCH0
AIEN
COCO CGMXCLK BUS CLOCK
ADC CLOCK
CLOCK GENERATOR
ADIV2-ADIV0
ADICLK
Figure 5-1. ADC Block Diagram
5.4.1 ADC Port I/O Pins PTB7/AD7-PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or DDR will not have any affect on the port pin that is selected by the ADC. Read of a port pin in use by the ADC will return a logic 0.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 89
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
5.4.2 Voltage Conversion When the input voltage to the ADC equals VREFH, the ADC converts the signal to $FF (full scale). If the input voltage equals VREFL, the ADC converts it to $00. Input voltages between VREFH and VREFL are a straight-line linear conversion.
NOTE:
Freescale Semiconductor, Inc...
Inside the ADC module, the reference voltages VREFH is connected to the ADC analog power, VDDAD; and VREFL is connected to the ADC analog ground, VSSAD. Therefore, the ADC input voltage should not exceed these analog supply voltages. Connect the VDDAD pin to the same voltage potential as the VDD pin, and connect the VSSAD pin to the same voltage potential as the VSS pin. The VDDAD pin should be routed carefully for maximum noise immunity.
5.4.3 Conversion Time Conversion starts after a write to the ADSCR. One conversion will take between 16 and 17 ADC clock cycles. The ADIVx and ADICLK bits should be set to provide a 1-MHz ADC clock frequency. Conversion time = 16 to 17 ADC cycles ADC frequency Number of bus cycles = conversion time x bus frequency
5.4.4 Conversion In continuous conversion mode, the ADC data register will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after the first conversion and will stay set until the next write of the ADC status and control register or the next read of the ADC data register. In single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs between writes to the ADSCR.
Technical Data 90
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) Interrupts
5.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes.
5.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.
Freescale Semiconductor, Inc...
5.6 Low-Power Modes
The WAIT and STOP instruction can put the MCU in low powerconsumption standby modes.
5.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4-ADCH0 bits in the ADC status and control register before executing the WAIT instruction.
5.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry.
5.7 I/O Signals
The ADC module has eight pins shared with port B, PTB7/AD7-PTB0/AD0.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 91
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
5.7.1 ADC Analog Power Pin (VDDAD)/ADC Voltage Reference High Pin (VREFH) The ADC analog portion uses VDDAD as its power pin. Connect the VDDAD pin to the same voltage potential as VDD. External filtering may be necessary to ensure clean VDDAD for good results.
NOTE:
For maximum noise immunity, route VDDAD carefully and place bypass capacitors as close as possible to the package.
Freescale Semiconductor, Inc...
5.7.2 ADC Analog Ground Pin (VSSAD)/ADC Voltage Reference Low Pin (VREFL) The ADC analog portion uses VSSAD as its ground pin. Connect the VSSAD pin to the same voltage potential as VSS.
NOTE:
Route VSSAD cleanly to avoid any offset errors.
5.7.3 ADC Voltage In (VADIN) VADIN is the input voltage signal from one of the eight ADC channels to the ADC module.
5.8 I/O Registers
These I/O registers control and monitor ADC operation: * * * ADC status and control register (ADSCR) ADC data register (ADR) ADC clock register (ADCLK)
Technical Data 92
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) I/O Registers
5.8.1 ADC Status and Control Register Function of the ADC status and control register (ADSCR) is described here.
Address: $003C Bit 7 Read: COCO Write: AIEN 0 ADCO 0 ADCH4 1 ADCH3 1 ADCH2 1 ADCH1 1 ADCH0 1 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0
Figure 5-2. ADC Status and Control Register (ADSCR) COCO -- Conversions Complete When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed except in the continuous conversion mode where it is set after the first conversion. This bit is cleared whenever the ADSCR is written or whenever the ADR is read. If the AIEN bit is a logic 1, the COCO becomes a read/write bit, which should be cleared to logic 0 for CPU to service the ADC interrupt request. Reset clears this bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1) AIEN -- ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO -- ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is completed between writes to the ADSCR when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com Technical Data 93
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
ADCH4-ADCH0 -- ADC Channel Select Bits ADCH4-ADCH0 form a 5-bit field which is used to select one of 16 ADC channels. Only eight channels, AD7-AD0, are available on this MCU. The channels are detailed in Table 5-1. Care should be taken when using a port pin as both an analog and digital input simultaneously to prevent switching noise from corrupting the analog signal. (See Table 5-1.) The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not being used.
Freescale Semiconductor, Inc...
NOTE:
Recovery from the disabled state requires one conversion cycle to stabilize. The voltage levels supplied from internal reference nodes, as specified in Table 5-1, are used to verify the operation of the ADC converter both in production test and for user applications. Table 5-1. Mux Channel Select
ADCH4 0 0 0 0 0 0 0 0 0 ADCH3 0 0 0 0 0 0 0 0 1 ADCH2 0 0 0 0 1 1 1 1 0 ADCH1 0 0 1 1 0 0 1 1 0 ADCH0 0 1 0 1 0 1 0 1 0 Input Select PTB0/AD0 PTB1/AD1 PTB2/AD2 PTB3/AD3 PTB4/AD4 PTB5/AD5 PTB6/AD6 PTB7/AD7
1 1 1 1
1 1 1 1
1 1 1 1
0 0 1 1
0 1 0 1
Reserved
VREFH VREFL ADC power off
NOTE: If any unused channels are selected, the resulting ADC conversion will be unknown or reserved.
Technical Data 94
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) I/O Registers
5.8.2 ADC Data Register One 8-bit result register, ADC data register (ADR), is provided. This register is updated each time an ADC conversion completes.
Address: $003D Bit 7 Read: Write: AD7 6 AD6 5 AD5 4 AD4 3 AD3 2 AD2 1 AD1 Bit 0 AD0
Freescale Semiconductor, Inc...
Reset:
0
0
0
0
0
0
0
0
= Unimplemented
Figure 5-3. ADC Data Register (ADR)
5.8.3 ADC Clock Register The ADC clock register (ADCLK) selects the clock frequency for the ADC.
Address: $003E Bit 7 Read: ADIV2 Write: Reset: 0 0 0 0 0 0 0 0 ADIV1 ADIV0 ADICLK 6 5 4 3 0 2 0 1 0 Bit 0 0
= Unimplemented
Figure 5-4. ADC Clock Register (ADCLK) ADIV2-ADIV0 -- ADC Clock Prescaler Bits ADIV2-ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 5-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 95
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
Table 5-2. ADC Clock Divide Ratio
ADIV2 0 0 0 0 1 ADIV1 0 0 1 1 X ADIV0 0 1 0 1 X ADC Clock Rate ADC input clock / 1 ADC input clock / 2 ADC input clock / 4 ADC input clock / 8 ADC input clock / 16
Freescale Semiconductor, Inc...
X = don't care
ADICLK -- ADC Input Clock Select Bit ADICLK selects either the bus clock or CGMXCLK as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source. If the external clock (CGMXCLK) is equal to or greater than 1 MHz, CGMXCLK can be used as the clock source for the ADC. If CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as the clock source. As long as the internal ADC clock is at approximately 1 MHz, correct operation can be guaranteed. 1 = Internal bus clock 0 = External clock (CGMXCLK) ADC input clock frequency ----------------------------------------------------------------------- = 1MHz ADIV2 -ADIV0
Technical Data 96
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 6. Break Module (BRK)
6.1 Contents
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Freescale Semiconductor, Inc...
6.3
6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . .100 6.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 100 6.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .100 6.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 100 6.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 6.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 6.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 101 6.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .102 6.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.6.4 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Introduction
This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Break Module (BRK) For More Information On This Product, Go to: www.freescale.com
Technical Data 97
Freescale Semiconductor, Inc.
Break Module (BRK) 6.3 Features
Features of the break module include: * * * * Accessible input/output (I/O) registers during the break interrupt CPU-generated break interrupts Software-generated break interrupts COP disabling during break interrupts
Freescale Semiconductor, Inc...
6.4 Functional Description
When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: * * A CPU-generated address (the address in the program counter) matches the contents of the break address registers. Software writes a logic 1 to the BRKA bit in the break status and control register.
When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 6-1 shows the structure of the break module.
Technical Data 98
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Break Module (BRK) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BRK) Functional Description
IAB15-IAB8
BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB15-IAB0 CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW BREAK
Freescale Semiconductor, Inc...
IAB7-IAB0
Figure 6-1. Break Module Block Diagram
Addr.
Register Name
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW Note 0
Bit 0 R
Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Read: SIM Break Flag Control Register Write: (SBFCR) Reset: Read: Break Address Register High Write: (BRKH) Reset: Read: Break Address Register Low Write: (BRKL) Reset:
$FE03
BCFE 0 Bit 15 0 Bit 7 0 BRKE 0
R
R
R
R
R
R
R
$FE09
14 0 6 0 BRKA 0
13 0 5 0 0
12 0 4 0 0
11 0 3 0 0
10 0 2 0 0
9 0 1 0 0
Bit 8 0 Bit 0 0 0
$FE0A
Read: Break Status and Control $FE0B Register Write: (BRKSCR) Reset:
Note: Writing a logic 0 clears SBSW.
0
0 R
0 = Reserved
0
0
0
= Unimplemented
Figure 6-2. I/O Register Summary
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Break Module (BRK) For More Information On This Product, Go to: www.freescale.com
Technical Data 99
Freescale Semiconductor, Inc.
Break Module (BRK)
6.4.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state.
6.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: * Loading the instruction register with the SWI instruction Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)
Freescale Semiconductor, Inc...
*
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.
6.4.3 TIM1 and TIM2 During Break Interrupts A break interrupt stops the timer counters.
6.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin.
6.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
6.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set. See Section 3. Low-Power Modes. Clear the SBSW bit by writing logic 0 to it.
Technical Data 100 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Break Module (BRK) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BRK) Break Module Registers
6.5.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register.
6.6 Break Module Registers
These registers control and monitor operation of the break module:
Freescale Semiconductor, Inc...
* * * * *
Break status and control register (BRKSCR) Break address register high (BRKH) Break address register low (BRKL) SIM break status register (SBSR) SIM break flag control register (SBFCR)
6.6.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits.
Address: $FE0B Bit 7 Read: BRKE Write: Reset: 0 0 0 0 0 0 0 0 BRKA 6 5 0 4 0 3 0 2 0 1 0 Bit 0 0
= Unimplemented
Figure 6-3. Break Status and Control Register (BRKSCR) BRKE -- Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Break Module (BRK) For More Information On This Product, Go to: www.freescale.com
Technical Data 101
Freescale Semiconductor, Inc.
Break Module (BRK)
BRKA -- Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = (When read) Break address match 0 = (When read) No break address match
Freescale Semiconductor, Inc...
6.6.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.
Address:
$FE09
Bit 7 Read: Bit 15 Write: Reset: 0
6 14 0
5 13 0
4 12 0
3 11 0
2 10 0
1 9 0
Bit 0 Bit 8 0
Figure 6-4. Break Address Register High (BRKH)
Address:
$FE0A
Bit 7 Read: Bit 7 Write: Reset: 0
6 6 0
5 5 0
4 4 0
3 3 0
2 2 0
1 1 0
Bit 0 Bit 0 0
Figure 6-5. Break Address Register Low (BRKL)
Technical Data 102
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Break Module (BRK) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BRK) Break Module Registers
6.6.3 Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop or wait mode. The flag is useful in applications requiring a return to stop or wait mode after exiting from a break interrupt.
Address: $FE00 Bit 7 Read: 6 R 5 R 4 R 3 R 2 R Note 0 R = Reserved 1 SBSW R Write: Reset:
Note: Writing a logic 0 clears SBSW.
Bit 0 R
Freescale Semiconductor, Inc...
Figure 6-6. SIM Break Status Register (SBSR) SBSW -- SIM Break Stop/Wait Bit This read/write bit is set when a break interrupt causes an exit from stop or wait mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Break interrupt during stop/wait mode 0 = No break interrupt during stop/wait mode SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example. This code works if the H register was stacked in the break interrupt routine. Execute this code at the end of the break interrupt routine.
HIBYTE LOBYTE ; EQU EQU If not BRCLR TST BNE DEC DEC PULH RTI 5 6 SBSW, do RTI SBSW,BSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP
DOLO RETURN
; ; ; ; ; ; ;
See if wait mode or stop mode was exited by break. If RETURNLO is not 0, then just decrement low byte. Else deal with high byte also. Point to WAIT/STOP opcode. Restore H register.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Break Module (BRK) For More Information On This Product, Go to: www.freescale.com
Technical Data 103
Freescale Semiconductor, Inc.
Break Module (BRK)
6.6.4 Break Flag Control Register The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: R R R R R R R 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0 R = Reserved
Figure 6-7. SIM Break Flag Control Register (SBFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
Technical Data 104
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Break Module (BRK) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 7. Clock Generator Module (CGMC)
7.1 Contents
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Freescale Semiconductor, Inc...
7.3
7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.4.1 Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.4.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .109 7.4.3 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.4.4 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 111 7.4.5 Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 111 7.4.6 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.4.7 Special Programming Exceptions . . . . . . . . . . . . . . . . . . .117 7.4.8 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 117 7.4.9 CGMC External Connections . . . . . . . . . . . . . . . . . . . . . . . 118 7.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.5.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 119 7.5.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . 119 7.5.3 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 120 7.5.4 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 120 7.5.5 PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 120 7.5.6 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 120 7.5.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB) . . . . . . 120 7.5.8 Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . 121 7.5.9 CGMC Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . 121 7.5.10 CGMC CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . 121 7.6 CGMC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.6.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . 125 7.6.3 PLL Multiplier Select Register High . . . . . . . . . . . . . . . . . . 127 7.6.4 PLL Multiplier Select Register Low. . . . . . . . . . . . . . . . . . . 128
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com Technical Data 105
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
7.6.5 7.6.6 7.7 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . . 129 PLL Reference Divider Select Register . . . . . . . . . . . . . . . 130 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.8.3 CGMC During Break Interrupts . . . . . . . . . . . . . . . . . . . . . 132
Freescale Semiconductor, Inc...
7.9 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .133 7.9.1 Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . . 133 7.9.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . . 134 7.9.3 Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Introduction
This section describes the clock generator module. The CGMC generates the crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGMC also generates the base clock signal, CGMOUT, which is based on either the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. In user mode, CGMOUT is the clock from which the SIM derives the system clocks, including the bus clock, which is at a frequency of CGMOUT/2. In monitor mode, PTC3 determines the bus clock. The PLL is a fully functional frequency generator designed for use with crystals or ceramic resonators. The PLL can generate an 8-MHz bus frequency using a 32-kHz crystal.
Technical Data 106
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Features
7.3 Features
Features of the CGMC include: * * * Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference Low-frequency crystal operation with low-power operation and high-output frequency resolution Programmable prescaler for power-of-two increases in frequency Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation Automatic bandwidth control mode for low-jitter operation Automatic frequency lock detector CPU interrupt on entry or exit from locked condition Configuration register bit to allow oscillator operation during stop mode
Freescale Semiconductor, Inc...
* * * * *
7.4 Functional Description
The CGMC consists of three major submodules: * * * Crystal oscillator circuit -- The crystal oscillator circuit generates the constant crystal frequency clock, CGMXCLK. Phase-locked loop (PLL) -- The PLL generates the programmable VCO frequency clock, CGMVCLK. Base clock selector circuit -- This software-controlled circuit selects either CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from either CGMOUT or CGMXCLK.
Figure 7-1 shows the structure of the CGMC.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 107
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
OSCILLATOR (OSC) OSC2 CGMXCLK (TO: SIM, TIMTB15A, ADC) OSC1
SIMOSCEN (FROM SIM) OSCSTOPENB (FROM CONFIG)
Freescale Semiconductor, Inc...
PHASE-LOCKED LOOP (PLL)
CGMRDV
REFERENCE DIVIDER R
CGMRCLK BCS CLOCK SELECT CIRCUIT
A
CGMOUT (TO SIM) SIMDIV2 (FROM SIM)
/2
B S*
RDS3-RDS0
VDDA
CGMXFC
VSSA VPR1-VPR0 VRS7-VRS0 L 2E
*WHEN S = 1, CGMOUT = B
PHASE DETECTOR
LOOP FILTER
VOLTAGE CONTROLLED OSCILLATOR PLL ANALOG
CGMVCLK
LOCK DETECTOR
AUTOMATIC MODE CONTROL
INTERRUPT CONTROL
PLLIREQ (TO SIM)
LOCK MUL11-MUL0 N CGMVDV FREQUENCY DIVIDER
AUTO
ACQ
PLLIE PRE1-PRE0 2P FREQUENCY DIVIDER
PLLF
Figure 7-1. CGMC Block Diagram
Technical Data 108
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Functional Description
7.4.1 Crystal Oscillator Circuit The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration module (SIM) or the OSCSTOPENB bit in the CONFIG register enable the crystal oscillator circuit. The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock. CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related external components. An externally generated clock also can feed the OSC1 pin of the crystal oscillator circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.
Freescale Semiconductor, Inc...
7.4.2 Phase-Locked Loop Circuit (PLL) The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes either automatically or manually.
7.4.3 PLL Circuits The PLL consists of these circuits: * * * * * * * Voltage-controlled oscillator (VCO) Reference divider Frequency prescaler Modulo VCO frequency divider Phase detector Loop filter Lock detector
Technical Data 109
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
The operating range of the VCO is programmable for a wide range of frequencies and for maximum immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range from roughly one-half to twice the center-of-range frequency, fVRS. Modulating the voltage on the CGM/XFC pin changes the frequency within this range. By design, fVRS is equal to the nominal center-of-range frequency, fNOM, (38.4 kHz) times a linear factor, L, and a power-of-two factor, E, or (L x 2E)fNOM.
Freescale Semiconductor, Inc...
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a programmable modulo reference divider, which divides fRCLK by a factor, R. The divider's output is the final reference clock, CGMRDV, running at a frequency, fRDV = fRCLK/R. With an external crystal (30 kHz-100 kHz), always set R = 1 for specified performance. With an external high-frequency clock source, use R to divide the external frequency to between 30 kHz and 100 kHz. The VCO's output clock, CGMVCLK, running at a frequency, fVCLK, is fed back through a programmable prescale divider and a programmable modulo divider. The prescaler divides the VCO clock by a power-of-two factor P and the modulo divider reduces the VCO clock by a factor, N. The dividers' output is the VCO feedback clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N x 2P). (See 7.4.6 Programming the PLL for more information.) The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock, CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to CGM/XFC based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, described in 7.4.4 Acquisition and Tracking Modes. The value of the external capacitor and the reference frequency determines the speed of the corrections and the stability of the PLL. The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final reference frequency, fRDV. The circuit determines the mode of the PLL and the lock condition based on this comparison.
Technical Data 110 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Functional Description
7.4.4 Acquisition and Tracking Modes The PLL filter is manually or automatically configurable into one of two operating modes: * Acquisition mode -- In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL startup or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. (See 7.6.2 PLL Bandwidth Control Register.) Tracking mode -- In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. (See 7.4.8 Base Clock Selector Circuit.) The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ bit is set.
Freescale Semiconductor, Inc...
*
7.4.5 Manual and Automatic PLL Bandwidth Modes The PLL can change the bandwidth or operational mode of the loop filter manually or automatically. Automatic mode is recommended for most users. In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 7.6.2 PLL Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (during PLL startup, usually) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock. (See 7.4.8 Base Clock Selector Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate action, depending on the application. (See 7.7 Interrupts for information and precautions on using interrupts.)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com Technical Data 111
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
The following conditions apply when the PLL is in automatic bandwidth control mode: * The ACQ bit (See 7.6.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of the filter. (See 7.4.4 Acquisition and Tracking Modes.) The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 7.9 Acquisition/Lock Time Specifications for more information.) The LOCK bit is a read-only indicator of the locked state of the PLL. The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 7.9 Acquisition/Lock Time Specifications for more information.) CPU interrupts can occur if enabled (PLLIE = 1) when the PLL's lock condition changes, toggling the LOCK bit. (See 7.6.1 PLL Control Register.)
*
Freescale Semiconductor, Inc...
* *
*
The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below fBUSMAX.
Technical Data 112
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Functional Description
The following conditions apply when in manual mode: * ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual mode, the ACQ bit must be clear. Before entering tracking mode (ACQ = 1), software must wait a given time, tACQ (See 7.9 Acquisition/Lock Time Specifications.), after turning on the PLL by setting PLLON in the PLL control register (PCTL). Software must wait a given time, tAL, after entering tracking mode before selecting the PLL as the clock source to CGMOUT (BCS = 1). The LOCK bit is disabled. CPU interrupts from the CGMC are disabled.
*
Freescale Semiconductor, Inc...
*
* * 7.4.6 Programming the PLL
The following procedure shows how to program the PLL.
NOTE:
The round function in the following equations means that the real number should be rounded to the nearest integer number. 1. Choose the desired bus frequency, fBUSDES. 2. Calculate the desired VCO frequency (four times the desired bus frequency).
f VCLKDES = 4 x f BUSDES
3. Choose a practical PLL (crystal) reference frequency, fRCLK, and the reference clock divider, R. Typically, the reference crystal is 32.768 kHz and R = 1. Frequency errors to the PLL are corrected at a rate of fRCLK/R. For stability and lock time reduction, this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate. The relationship between the VCO frequency, fVCLK, and the reference frequency, fRCLK, is
2N f VCLK = ----------- ( f RCLK ) R MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com Technical Data 113
P
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
P, the power of two multiplier, and N, the range multiplier, are integers. In cases where desired bus frequency has some tolerance, choose fRCLK to a value determined either by other module requirements (such as modules which are clocked by CGMXCLK), cost requirements, or ideally, as high as the specified range allows. See Section 23. Electrical Specifications. Choose the reference divider, R = 1. After choosing N and P, the actual bus frequency can be determined using equation in 2 above. When the tolerance on the bus frequency is tight, choose fRCLK to an integer divisor of fBUSDES, and R = 1. If fRCLK cannot meet this requirement, use the following equation to solve for R with practical choices of fRCLK, and choose the fRCLK that gives the lowest R.
f VCLKDES f VCLKDES R = round R MAX x ------------------------- - integer ------------------------- f RCLK f RCLK
Freescale Semiconductor, Inc...
4. Select a VCO frequency multiplier, N.
R x fVCLKDES N = round ------------------------------------ f RCLK
Reduce N/R to the lowest possible R. 5. If N is < Nmax, use P = 0. If N > Nmax, choose P using this table:
Current N Value 0 < N N max N max < N N max x 2 N max x 2 < N N max x 4 N max x 4 < N N max x 8 P 0 1 2 3
Then recalculate N:
R x f VCLKDES N = round ------------------------------------ P f x2 RCLK
Technical Data 114
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Functional Description
6. Calculate and verify the adequacy of the VCO and bus frequencies fVCLK and fBUS.
f VCLK = ( 2 x N R ) x f RCLK f BUS = ( f VCLK ) 4
P
7. Select the VCO's power-of-two range multiplier E, according to this table:
Frequency Range E 0 1 2
Freescale Semiconductor, Inc...
0 < fVCLK < 9,830,400 9,830,400 fVCLK < 19,660,800 19,660,800 fVCLK < 39,321,600
NOTE: Do not program E to a value of 3.
8. Select a VCO linear range multiplier, L, where fNOM = 38.4 kHz
f VCLK L = round -------------------------- 2E x f NOM
9. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, fVRS. The center-of-range frequency is the midpoint between the minimum and maximum frequencies attainable by the PLL.
f VRS = ( L x 2 )f NOM
E
For proper operation,
f NOM x 2 f VRS - f VCLK -------------------------2
E
10. Verify the choice of P, R, N, E, and L by comparing fVCLK to fVRS and fVCLKDES. For proper operation, fVCLK must be within the application's tolerance of fVCLKDES, and fVRS must be as close as possible to fVCLK.
NOTE:
Exceeding the recommended maximum bus frequency or VCO frequency can crash the MCU.
Technical Data 115
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
11. Program the PLL registers accordingly: a. In the PRE bits of the PLL control register (PCTL), program the binary equivalent of P. b. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E. c. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high (PMSH), program the binary equivalent of N.
Freescale Semiconductor, Inc...
d. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L. e. In the PLL reference divider select register (PMDS), program the binary coded equivalent of R.
NOTE:
The values for P, E, N, L, and R can only be programmed when the PLL is off (PLLON = 0). Table 7-1 provides numeric examples (numbers are in hexadecimal notation): Table 7-1. Numeric Example
fBUS 2.0 MHz 2.4576 MHz 2.5 MHz 4.0 MHz 4.9152 MHz 5.0 MHz 7.3728 MHz 8.0 MHz fRCLK 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz 32.768 kHz R 1 1 1 1 1 1 1 1 N F5 12C 132 1E9 258 263 384 3D1 P 0 0 0 0 0 0 0 0 E 0 1 1 1 2 2 2 2 L D1 80 83 D1 80 82 C0 D0
Technical Data 116
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Functional Description
7.4.7 Special Programming Exceptions The programming method described in 7.4.6 Programming the PLL does not account for three possible exceptions. A value of 0 for R, N, or L is meaningless when used in the equations given. To account for these exceptions: * * A 0 value for R or N is interpreted exactly the same as a value of 1. A 0 value for L disables the PLL and prevents its selection as the source for the base clock.
Freescale Semiconductor, Inc...
(See 7.4.8 Base Clock Selector Circuit.)
7.4.8 Base Clock Selector Circuit This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK). The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base clock.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 117
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
7.4.9 CGMC External Connections In its typical configuration, the CGMC requires up to nine external components. Five of these are for the crystal oscillator and two or four are for the PLL. The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 7-2. Figure 7-2 shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components:
Freescale Semiconductor, Inc...
* * * * *
Crystal, X1 Fixed capacitor, C1 Tuning capacitor, C2 (can also be a fixed capacitor) Feedback resistor, RB Series resistor, RS
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines. Refer to the crystal manufacturer's data for more information regarding values for C1 and C2. Figure 7-2 also shows the external components for the PLL: * * Bypass capacitor, CBYP Filter network
Routing should be done with great care to minimize signal cross talk and noise. See 23.17.1 CGM Component Specifications for capacitor and resistor values.
Technical Data 118
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) I/O Signals
SIMOSCEN OSCSTOPENB (FROM CONFIG)
CGMXCLK
OSC1
OSC2
CGMXFC
VSSA
VDDA VDD
RB
Freescale Semiconductor, Inc...
10 k RS 0.033 F X1 C1 C2
0.01 F
CBYP 0.1 F
Note: Filter network in box can be replaced with a 0.47F capacitor, but will degrade stability.
Figure 7-2. CGMC External Connections
7.5 I/O Signals
The following paragraphs describe the CGMC I/O signals.
7.5.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is an input to the crystal oscillator amplifier.
7.5.2 Crystal Amplifier Output Pin (OSC2) The OSC2 pin is the output of the crystal oscillator inverting amplifier.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 119
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
7.5.3 External Filter Capacitor Pin (CGMXFC) The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is connected to this pin. (See Figure 7-2.)
NOTE:
To prevent noise problems, the filter network should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the network.
Freescale Semiconductor, Inc...
7.5.4 PLL Analog Power Pin (VDDA) VDDA is a power pin used by the analog portions of the PLL. Connect the VDDA pin to the same voltage potential as the VDD pin.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.
7.5.5 PLL Analog Ground Pin (VSSA) VSSA is a ground pin used by the analog portions of the PLL. Connect the VSSA pin to the same voltage potential as the VSS pin.
NOTE:
Route VSSA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.
7.5.6 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and PLL.
7.5.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB) OSCSTOPENB is a bit in the CONFIG register that enables the oscillator to continue operating during stop mode. If this bit is set, the Oscillator continues running during stop mode. If this bit is not set (default), the oscillator is controlled by the SIMOSCEN signal which will disable the oscillator during stop mode.
Technical Data 120 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) CGMC Registers
7.5.8 Crystal Output Frequency Signal (CGMXCLK) CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 7-2 shows only the logical relation of CGMXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of CGMXCLK can be unstable at startup.
Freescale Semiconductor, Inc...
7.5.9 CGMC Base Clock Output (CGMOUT) CGMOUT is the clock output of the CGMC. This signal goes to the SIM, which generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided by two.
7.5.10 CGMC CPU Interrupt (CGMINT) CGMINT is the interrupt signal generated by the PLL lock detector.
7.6 CGMC Registers
These registers control and monitor operation of the CGMC: * * * * PLL control register (PCTL) (See 7.6.1 PLL Control Register.) PLL bandwidth control register (PBWC) (See 7.6.2 PLL Bandwidth Control Register.) PLL multiplier select register high (PMSH) (See 7.6.3 PLL Multiplier Select Register High.) PLL multiplier select register low (PMSL) (See 7.6.4 PLL Multiplier Select Register Low.)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 121
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
* * PLL VCO range select register (PMRS) (See 7.6.5 PLL VCO Range Select Register.) PLL reference divider select register (PMDS) (See 7.6.6 PLL Reference Divider Select Register.)
Figure 7-3 is a summary of the CGMC registers.
Addr.
Register Name Read: PLL Control Register Write: (PCTL) Reset: Read: PLL Bandwidth Control Register Write: (PBWC) Reset:
Bit 7 PLLIE 0 AUTO 0 0
6 PLLF
5 PLLON 1 ACQ 0 0
4 BCS 0 0
3 PRE1 0 0
2 PRE0 0 0
1 VPR1 0 0
Bit 0 VPR0 0 R 0 MUL8 0 MUL0 0 VRS0 0 RDS0 1
Freescale Semiconductor, Inc...
$0036
0 LOCK
$0037
0 0
0 0
0 MUL11 0 MUL3 0 VRS3 0 RDS3 0 = Reserved
0 MUL10 0 MUL2 0 VRS2 0 RDS2 0
0 MUL9 0 MUL1 0 VRS1 0 RDS1 0
Read: PLL Multiplier Select High $0038 Register Write: (PMSH) Reset: Read: PLL Multiplier Select Low $0039 Register Write: (PMSL) Reset: Read: PLL VCO Range Select Register Write: (PMRS) Reset: Read: PLL Reference Divider Select Register Write: (PMDS) Reset:
0 MUL7 0 VRS7 0 0
0 MUL6 1 VRS6 1 0
0 MUL5 0 VRS5 0 0
0 MUL4 0 VRS4 0 0
$003A
$003B
0
0
0
0 R
= Unimplemented NOTES: 1. When AUTO = 0, PLLIE is forced clear and is read-only. 2. When AUTO = 0, PLLF and LOCK read as clear. 3. When AUTO = 1, ACQ is read-only. 4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only. 5. When PLLON = 1, the PLL programming register is read-only. 6. When BCS = 1, PLLON is forced set and is read-only.
Figure 7-3. CGMC I/O Register Summary
Technical Data 122
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) CGMC Registers
7.6.1 PLL Control Register The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base clock selector bit, the prescaler bits, and the VCO power-of-two range selector bits.
Address: $0036 Bit 7 Read: PLLIE Write: Reset: 0 0 1 0 0 0 0 0 6 PLLF PLLON BCS PRE1 PRE0 VPR1 VPR0 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
= Unimplemented
Figure 7-4. PLL Control Register (PCTL) PLLIE -- PLL Interrupt Enable Bit This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE bit. 1 = PLL interrupts enabled 0 = PLL interrupts disabled PLLF -- PLL Interrupt Flag Bit This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit. 1 = Change in lock condition 0 = No change in lock condition
NOTE:
Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on the PLL control register clears the PLLF bit.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 123
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
PLLON -- PLL On Bit This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 7.4.8 Base Clock Selector Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up. 1 = PLL on 0 = PLL off
Freescale Semiconductor, Inc...
BCS -- Base Clock Select Bit This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGMC output, CGMOUT. CGMOUT frequency is one-half the frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one source clock to the other. During the transition, CGMOUT is held in stasis. (See 7.4.8 Base Clock Selector Circuit.) Reset clears the BCS bit. 1 = CGMVCLK divided by two drives CGMOUT 0 = CGMXCLK divided by two drives CGMOUT
NOTE:
PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires two writes to the PLL control register. (See 7.4.8 Base Clock Selector Circuit.) PRE1 and PRE0 -- Prescaler Program Bits These read/write bits control a prescaler that selects the prescaler power-of-two multiplier, P. (See 7.4.3 PLL Circuits and 7.4.6 Programming the PLL.) PRE1 and PRE0 cannot be written when the PLLON bit is set. Reset clears these bits.
NOTE:
The value of P is normally 0 when using a 32.768-kHz crystal as the reference.
Technical Data 124
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) CGMC Registers
Table 7-2. PRE1 and PRE0 Programming
PRE1 and PRE0 00 01 10 11 P 0 1 2 3 Prescaler Multiplier 1 2 4 8
VPR1 and VPR0 -- VCO Power-of-Two Range Select Bits
Freescale Semiconductor, Inc...
These read/write bits control the VCO's hardware power-of-two range multiplier E that, in conjunction with L (See 7.4.3 PLL Circuits, 7.4.6 Programming the PLL, and 7.6.5 PLL VCO Range Select Register.) controls the hardware center-of-range frequency, fVRS. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears these bits. Table 7-3. VPR1 and VPR0 Programming
VPR1 and VPR0 00 01 10 11
1. Do not program E to a value of 3.
E 0 1 2 3(1)
VCO Power-of-Two Range Multiplier 1 2 4 8
7.6.2 PLL Bandwidth Control Register The PLL bandwidth control register (PBWC): * * * * Selects automatic or manual (software-controlled) bandwidth control mode Indicates when the PLL is locked In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode In manual operation, forces the PLL into acquisition or tracking mode
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 125
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
Address:
$0037 Bit 7 6 LOCK AUTO ACQ 0 0 0 R 0 = Reserved 0 0 5 4 0 3 0 2 0 1 0 R 0 Bit 0
Read: Write: Reset: 0
= Unimplemented
Figure 7-5. PLL Bandwidth Control Register (PBWC)
Freescale Semiconductor, Inc...
AUTO -- Automatic Bandwidth Control Bit This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit. 1 = Automatic bandwidth control 0 = Manual bandwidth control LOCK -- Lock Indicator Bit When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. The write one function of this bit is reserved for test, so this bit must always be written a 0. Reset clears the LOCK bit. 1 = VCO frequency correct or locked 0 = VCO frequency incorrect or unlocked ACQ -- Acquisition Mode Bit When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is in acquisition or tracking mode. In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode. 1 = Tracking mode 0 = Acquisition mode
Technical Data 126 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) CGMC Registers
7.6.3 PLL Multiplier Select Register High The PLL multiplier select register high (PMSH) contains the programming information for the high byte of the modulo feedback divider.
Address: $0038 Bit 7 Read: 0 6 0 5 0 4 0 MUL11 MUL10 0 MUL9 0 MUL8 0 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Write: Reset: 0 0 0 0 0
= Unimplemented
Figure 7-6. PLL Multiplier Select Register High (PMSH) MUL11-MUL8 -- Multiplier Select Bits These read/write bits control the high byte of the modulo feedback divider that selects the VCO frequency multiplier N. (See 7.4.3 PLL Circuits and 7.4.6 Programming the PLL.) A value of $0000 in the multiplier select registers configures the modulo feedback divider the same as a value of $0001. Reset initializes the registers to $0040 for a default multiply value of 64.
NOTE:
The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). Bit7-Bit4 -- Unimplemented Bits These bits have no function and always read as logic 0s.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 127
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
7.6.4 PLL Multiplier Select Register Low The PLL multiplier select register low (PMSL) contains the programming information for the low byte of the modulo feedback divider.
Address: $0038 Bit 7 Read: MUL7 Write: MUL6 1 MUL5 0 MUL4 0 MUL3 0 MUL2 0 MUL1 0 MUL0 0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0
Figure 7-7. PLL Multiplier Select Register Low (PMSL) MUL7-MUL0 -- Multiplier Select Bits These read/write bits control the low byte of the modulo feedback divider that selects the VCO frequency multiplier, N. (See 7.4.3 PLL Circuits and 7.4.6 Programming the PLL.) MUL7-MUL0 cannot be written when the PLLON bit in the PCTL is set. A value of $0000 in the multiplier select registers configures the modulo feedback divider the same as a value of $0001. Reset initializes the register to $40 for a default multiply value of 64.
NOTE:
The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1).
Technical Data 128
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) CGMC Registers
7.6.5 PLL VCO Range Select Register
NOTE:
PMRS may be called PVRS on other HC08 derivatives. The PLL VCO range select register (PMRS) contains the programming information required for the hardware configuration of the VCO.
Address: $003A Bit 7 Read: VRS7 Write: Reset: 0 1 0 0 0 0 0 0 6 VRS6 5 VRS5 4 VRS4 3 VRS3 2 VRS2 1 VRS1 Bit 0 VRS0
Freescale Semiconductor, Inc...
Figure 7-8. PLL VCO Range Select Register (PMRS) VRS7-VRS0 -- VCO Range Select Bits These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with E (See 7.4.3 PLL Circuits, 7.4.6 Programming the PLL, and 7.6.1 PLL Control Register.), controls the hardware center-of-range frequency, fVRS. VRS7-VRS0 cannot be written when the PLLON bit in the PCTL is set. (See 7.4.7 Special Programming Exceptions.) A value of $00 in the VCO range select register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 7.4.8 Base Clock Selector Circuit and 7.4.7 Special Programming Exceptions.). Reset initializes the register to $40 for a default range multiply value of 64.
NOTE:
The VCO range select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1) and such that the VCO clock cannot be selected as the source of the base clock (BCS = 1) if the VCO range select bits are all clear. The PLL VCO range select register must be programmed correctly. Incorrect programming can result in failure of the PLL to achieve lock.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 129
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
7.6.6 PLL Reference Divider Select Register
NOTE:
PMDS may be called PRDS on other HC08 derivatives. The PLL reference divider select register (PMDS) contains the programming information for the modulo reference divider.
Address: $003B Bit 7 Read: 0 6 0 5 0 4 0 RDS3 Write: Reset: 0 0 0 0 0 0 0 1 RDS2 RDS1 RDS0 3 2 1 Bit 0
Freescale Semiconductor, Inc...
= Unimplemented
Figure 7-9. PLL Reference Divider Select Register (PMDS) RDS3-RDS0 -- Reference Divider Select Bits These read/write bits control the modulo reference divider that selects the reference division factor, R. (See 7.4.3 PLL Circuits and 7.4.6 Programming the PLL.) RDS7-RDS0 cannot be written when the PLLON bit in the PCTL is set. A value of $00 in the reference divider select register configures the reference divider the same as a value of $01. (See 7.4.7 Special Programming Exceptions.) Reset initializes the register to $01 for a default divide value of 1.
NOTE: NOTE:
The reference divider select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). The default divide value of 1 is recommended for all applications. Bit7-Bit4 -- Unimplemented Bits These bits have no function and always read as logic 0s.
Technical Data 130
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Interrupts
7.7 Interrupts
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as logic 0.
Freescale Semiconductor, Inc...
Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations.
NOTE:
Software can select the CGMVCLK divided by two as the CGMOUT source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit.
7.8 Special Modes
The WAIT instruction puts the MCU in low power-consumption standby modes. 7.8.1 Wait Mode The WAIT instruction does not affect the CGMC. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power. Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com Technical Data 131
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
7.8.2 Stop Mode If the OSCSTOPENB bit in the CONFIG register is cleared (default), then the STOP instruction disables the CGMC (oscillator and phase locked loop) and holds low all CGMC outputs (CGMXCLK, CGMOUT, and CGMINT). If the STOP instruction is executed with the VCO clock, CGMVCLK, divided by two driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the crystal clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the crystal clock divided by two drives CGMOUT and BCS remains clear. If the OSCSTOPENB bit in the CONFIG register is set, then the phase locked loop is shut off but the oscillator will continue to operate in stop mode.
Freescale Semiconductor, Inc...
7.8.3 CGMC During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 19.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit.
Technical Data 132
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Acquisition/Lock Time Specifications
7.9 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times.
7.9.1 Acquisition/Lock Time Definitions Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the output settles to the desired value plus or minus a percent of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz 50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a -100-kHz noise hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz 5 kHz. Five kHz = 5% of the 100-kHz step input. Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error.
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 133
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
7.9.2 Parametric Influences on Reaction Time Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time. The most critical parameter which affects the reaction times of the PLL is the reference frequency, fRDV. This frequency is the input to the phase detector and controls how often the PLL makes corrections. For stability, the corrections must be small compared to the desired frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is under user control via the choice of crystal frequency fXCLK and the R value programmed in the reference divider. (See 7.4.3 PLL Circuits, 7.4.6 Programming the PLL, and 7.6.6 PLL Reference Divider Select Register.) Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. (See 7.9.3 Choosing a Filter.) Also important is the operating voltage potential applied to VDDA. The power supply potential alters the characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL. Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the
Technical Data 134 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC) Acquisition/Lock Time Specifications
filter capacitor, filter capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination.
7.9.3 Choosing a Filter As described in 7.9.2 Parametric Influences on Reaction Time, the external filter network is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage.
Freescale Semiconductor, Inc...
Either of the filter networks in Figure 7-10 is recommended when using a 32.768kHz reference crystal. Figure 7-10 (a) is used for applications requiring better stability. Figure 7-10 (b) is used in low-cost applications where stability is not critical.
CGMXFC CGMXFC
10 k
0.01 F
0.47 F
0.033 F
VSSA
VSSA
(a)
(b)
Figure 7-10. PLL Filter
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com
Technical Data 135
Freescale Semiconductor, Inc.
Clock Generator Module (CGMC)
Freescale Semiconductor, Inc...
Technical Data 136
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Clock Generator Module (CGMC) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 8. Configuration Register (CONFIG)
8.1 Contents
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Freescale Semiconductor, Inc...
8.3
8.2 Introduction
This section describes the configuration registers, CONFIG1 and CONFIG2. The configuration registers enable or disable these options: * * * * * * Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles) COP timeout period (218 - 24 or 213 - 24 CGMXCLK cycles) STOP instruction Computer operating properly module (COP) Low-voltage inhibit (LVI) module control and voltage trip point selection Enable/disable the oscillator (OSC) during stop mode
8.3 Functional Description
The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that these registers be written immediately after reset. The configuration registers are located at $001E and $001F. The configuration register may be read at anytime.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Configuration Register (CONFIG) For More Information On This Product, Go to: www.freescale.com Technical Data 137
Freescale Semiconductor, Inc.
Configuration Register (CONFIG)
NOTE:
On a FLASH device, the options except LVI5OR3 are one-time writeable by the user after each reset. The LVI5OR3 bit is one-time writeable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing onetime writeable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 8-1 and Figure 8-2.
Address: $001E Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 6 0 5 0 4 0 3 0 2 0 1 Bit 0
Freescale Semiconductor, Inc...
OSCSCIBDSTOPENB SRC 0 0
= Unimplemented
Figure 8-1. Configuration Register 2 (CONFIG2)
Address: $001F Bit 7 Read: COPRS Write: Reset: 0 0 0 0 See Note 0 0 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC STOP COPD 6 5 4 3 2 1 Bit 0
Note: LVI5OR3 bit is only reset via POR (power-on reset)
Figure 8-2. Configuration Register 1 (CONFIG1) OSCSTOPENB-- Oscillator Stop Mode Enable Bar Bit OSCSTOPENB enables the oscillator to continue operating during stop mode. Setting the OSCSTOPENB bit allows the oscillator to operate continuously even during stop mode. This is useful for driving the timebase module to allow it to generate periodic wakeup while in stop mode. (See 3.6 Clock Generator Module (CGM) subsection 3.6.2 Stop Mode.) 1 = Oscillator enabled to operate during stop mode 0 = Oscillator disabled during stop mode (default)
Technical Data 138
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Configuration Register (CONFIG) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Configuration Register (CONFIG) Functional Description
SCIBDSRC -- SCI Baud Rate Clock Source Bit SCIBDSRC controls the clock source used for the SCI. The setting of this bit affects the frequency at which the SCI operates. 1 = Internal data bus clock used as clock source for SCI 0 = External oscillator used as clock source for SCI COPRS -- COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. (See Section 9. Computer Operating Properly (COP).)
Freescale Semiconductor, Inc...
1 = COP timeout period = 213 - 24 CGMXCLK cycles 0 = COP timeout period = 218 - 24 CGMXCLK cycles LVISTOP -- LVI Enable in Stop Mode Bit When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. (See 3.6.2 Stop Mode.) 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode LVIRSTD -- LVI Reset Disable Bit LVIRSTD disables the reset signal from the LVI module. (See Section 14. Low-Voltage Inhibit (LVI).) 1 = LVI module resets disabled 0 = LVI module resets enabled LVIPWRD -- LVI Power Disable Bit LVIPWRD disables the LVI module. (See Section 14. Low-Voltage Inhibit (LVI).) 1 = LVI module power disabled 0 = LVI module power enabled LVI5OR3 -- LVI 5-V or 3-V Operating Mode Bit LVI5OR3 selects the voltage operating mode of the LVI module. (See Section 14. Low-Voltage Inhibit (LVI).) The voltage mode selected for the LVI should match the operating VDD. See Section 23. Electrical Specifications for the LVI's voltage trip points for each of the modes. 1 = LVI operates in 5-V mode. 0 = LVI operates in 3-V mode.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Configuration Register (CONFIG) For More Information On This Product, Go to: www.freescale.com Technical Data 139
Freescale Semiconductor, Inc.
Configuration Register (CONFIG)
SSREC -- Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay. 1 = Stop mode recovery after 32 CGMXCLK cycles 0 = Stop mode recovery after 4096 CGMXCLKC cycles
NOTE:
Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal oscillator, do not set the SSREC bit.
Freescale Semiconductor, Inc...
NOTE:
When the LVISTOP is enabled, the system stabilization time for power on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer than the enable time for the LVI. There is no period where the MCU is not protected from a low power condition. However, when using the short stop recovery configuration option, the 32-CGMXCLK delay is less than the LVI's turn-on time and there exists a period in startup where the LVI is not protecting the MCU. STOP -- STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD -- COP Disable Bit COPD disables the COP module. (See Section 9. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled
Technical Data 140
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Configuration Register (CONFIG) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 9. Computer Operating Properly (COP)
9.1 Contents
9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Freescale Semiconductor, Inc...
9.3
9.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 9.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 144 9.5 9.6 9.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 9.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .146
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
Technical Data 141
Freescale Semiconductor, Inc.
Computer Operating Properly (COP) 9.2 Introduction
The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register.
9.3 Functional Description
Freescale Semiconductor, Inc...
Figure 9-1 shows the structure of the COP module.
CGMXCLK
12-BIT COP PRESCALER CLEAR STAGES 5-12 CLEAR ALL STAGES
RESET CIRCUIT RESET STATUS REGISTER
STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH COPCTL WRITE
COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COP DISABLE (FROM CONFIG) RESET COPCTL WRITE COP RATE SEL (FROM CONFIG)
CLEAR COP COUNTER
Figure 9-1. COP Block Diagram
Technical Data 142
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com MOTOROLA
COP TIMEOUT
Freescale Semiconductor, Inc.
Computer Operating Properly (COP) I/O Signals
The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 - 24 or 213 - 24 CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration register. With a 213 - 24 CGMXCLK cycle overflow option, a 32.768-kHz crystal gives a COP timeout period of 250 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the prescaler.
Freescale Semiconductor, Inc...
NOTE:
Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the reset status register (RSR). In monitor mode, the COP is disabled if the RST pin or the IRQ is held at VTST. During the break state, VTST on the RST pin disables the COP.
NOTE:
Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.
9.4 I/O Signals
The following paragraphs describe the signals shown in Figure 9-1.
9.4.1 CGMXCLK CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency.
9.4.2 STOP Instruction The STOP instruction clears the COP prescaler.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
Technical Data 143
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
9.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 9.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low byte of the reset vector.
9.4.4 Power-On Reset
Freescale Semiconductor, Inc...
The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up.
9.4.5 Internal Reset An internal reset clears the COP prescaler and the COP counter.
9.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler.
9.4.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. (See Section 8. Configuration Register (CONFIG).)
9.4.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. (See Section 8. Configuration Register (CONFIG).)
Technical Data 144
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Computer Operating Properly (COP) COP Control Register
9.5 COP Control Register
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector.
Address: $FFFF
Bit 7 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Read: Write: Reset:
Low byte of reset vector Clear COP counter Unaffected by reset
Figure 9-2. COP Control Register (COPCTL)
9.6 Interrupts
The COP does not generate CPU interrupt requests.
9.7 Monitor Mode
When monitor mode is entered with VTST on the IRQ pin, the COP is disabled as long as VTST remains on the IRQ pin or the RST pin. When monitor mode is entered by having blank reset vectors and not having VTST on the IRQ pin, the COP is automatically disabled until a POR occurs.
9.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
Technical Data 145
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
9.8.1 Wait Mode The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine.
9.8.2 Stop Mode Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction is disabled, execution of a STOP instruction results in an illegal opcode reset.
Freescale Semiconductor, Inc...
9.9 COP Module During Break Mode
The COP is disabled during a break interrupt when VTST is present on the RST pin.
Technical Data 146
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 10. Central Processor Unit (CPU)
10.1 Contents
10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Freescale Semiconductor, Inc...
10.3
10.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 10.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . .152 10.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . .154
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 10.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.7 10.8 10.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 155 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 147
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) 10.3 Features
* * * * * * Object code fully upward-compatible with M68HC05 Family 16-bit stack pointer with stack manipulation instructions 16-bit index register with x-register manipulation instructions 8-MHz CPU internal bus frequency 64-Kbyte program/data memory space 16 addressing modes Memory-to-memory data moves without using accumulator Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions Enhanced binary-coded decimal (BCD) data handling Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes Low-power stop and wait modes
Freescale Semiconductor, Inc...
* * * * *
10.4 CPU Registers
Figure 10-1 shows the five CPU registers. CPU registers are not part of the memory map.
Technical Data 148
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU Registers
7 15 H 15 15 X
0 ACCUMULATOR (A) 0 INDEX REGISTER (H:X) 0 STACK POINTER (SP) 0 PROGRAM COUNTER (PC)
7 0 V11HINZC
CONDITION CODE REGISTER (CCR)
Freescale Semiconductor, Inc...
CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO'S COMPLEMENT OVERFLOW FLAG
Figure 10-1. CPU Registers
10.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.
Bit 7 Read: Write: Reset: Unaffected by reset 6 5 4 3 2 1 Bit 0
Figure 10-2. Accumulator (A)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 149
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
10.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location.
Freescale Semiconductor, Inc...
Bit 15 Read: Write: Reset: 0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate
Figure 10-3. Index Register (H:X)
10.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.
Technical Data 150
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU Registers
Bit 15 Read: Write: Reset: 0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 10-4. Stack Pointer (SP)
NOTE:
Freescale Semiconductor, Inc...
The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.
10.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.
Bit 15 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0
Figure 10-5. Program Counter (PC)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 151
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
10.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register.
Bit 7 Read: V 1 1 1 1 H X I 1 N X Z X C X 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Write: Reset: X
X = Indeterminate
Figure 10-6. Condition Code Register (CCR) V -- Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H -- Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4
Technical Data 152
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU Registers
I -- Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled
Freescale Semiconductor, Inc...
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N -- Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z -- Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 153
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
C -- Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions -- such as bit test and branch, shift, and rotate -- also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7
Freescale Semiconductor, Inc...
10.5 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.
10.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
10.6.1 Wait Mode The WAIT instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
Technical Data 154
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU During Break Interrupts
10.6.2 Stop Mode The STOP instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
Freescale Semiconductor, Inc...
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.
10.7 CPU During Break Interrupts
If a break module is present on the MCU, the CPU starts a break interrupt by: * * Loading the instruction register with the SWI instruction Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 155
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) 10.8 Instruction Set Summary
Table 10-1. Instruction Set Summary
Cycles
2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 2 2 2 3 4 4 3 2 4 5 4 1 1 4 3 5 4 1 1 4 3 5 3
Source Form
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP AIS #opr AIX #opr AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP BCC rel
Operation
Description
VH I NZC
Add with Carry
A (A) + (M) + (C)
Freescale Semiconductor, Inc...
IMM DIR EXT - IX2 IX1 IX SP1 SP2 IMM DIR EXT IX2 - IX1 IX SP1 SP2
A9 B9 C9 D9 E9 F9 9EE9 9ED9 AB BB CB DB EB FB 9EEB 9EDB A7 AF A4 B4 C4 D4 E4 F4 9EE4 9ED4
ii dd hh ll ee ff ff ff ee ff ii dd hh ll ee ff ff ff ee ff ii ii ii dd hh ll ee ff ff ff ee ff
Add without Carry
A (A) + (M)
Add Immediate Value (Signed) to SP Add Immediate Value (Signed) to H:X
SP (SP) + (16 M) H:X (H:X) + (16 M)
- - - - - - IMM - - - - - - IMM IMM DIR EXT IX2 - IX1 IX SP1 SP2
Logical AND
A (A) & (M)
0--
Arithmetic Shift Left (Same as LSL)
C b7 b0
0
DIR INH - - INH IX1 IX SP1 DIR INH INH - - IX1 IX SP1
38 dd 48 58 68 ff 78 9E68 ff 37 dd 47 57 67 ff 77 9E67 ff 24 rr
Arithmetic Shift Right
b7 b0
C
Branch if Carry Bit Clear
PC (PC) + 2 + rel ? (C) = 0
- - - - - - REL
Technical Data 156
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Instruction Set Summary
Table 10-1. Instruction Set Summary (Continued)
Cycles
4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 3 4 4 3 2 4 5 3 3 3 3 3 3 3
Source Form
Operation
Description
VH I NZC
BCLR n, opr
Clear Bit n in M
Mn 0
DIR (b0) DIR (b1) DIR (b2) DIR (b3) ------ DIR (b4) DIR (b5) DIR (b6) DIR (b7) - - - - - - REL - - - - - - REL - - - - - - REL
11 13 15 17 19 1B 1D 1F 25 27 90 92 28 29 22 24 2F 2E A5 B5 C5 D5 E5 F5 9EE5 9ED5 93 25 23 91 2C 2B 2D
dd dd dd dd dd dd dd dd rr rr rr rr rr rr rr rr rr rr ii dd hh ll ee ff ff ff ee ff rr rr rr rr rr rr rr
Freescale Semiconductor, Inc...
BCS rel BEQ rel BGE opr BGT opr BHCC rel BHCS rel BHI rel BHS rel BIH rel BIL rel BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP BLE opr BLO rel BLS rel BLT opr BMC rel BMI rel BMS rel
Branch if Carry Bit Set (Same as BLO) Branch if Equal Branch if Greater Than or Equal To (Signed Operands) Branch if Greater Than (Signed Operands) Branch if Half Carry Bit Clear Branch if Half Carry Bit Set Branch if Higher Branch if Higher or Same (Same as BCC) Branch if IRQ Pin High Branch if IRQ Pin Low
PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (Z) = 1 PC (PC) + 2 + rel ? (N V) = 0
PC (PC) + 2 + rel ? (Z) | (N V) = 0 - - - - - - REL PC (PC) + 2 + rel ? (H) = 0 PC (PC) + 2 + rel ? (H) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 0 PC (PC) + 2 + rel ? (C) = 0 PC (PC) + 2 + rel ? IRQ = 1 PC (PC) + 2 + rel ? IRQ = 0 - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL IMM DIR EXT - IX2 IX1 IX SP1 SP2
Bit Test
(A) & (M)
0--
Branch if Less Than or Equal To (Signed Operands) Branch if Lower (Same as BCS) Branch if Lower or Same Branch if Less Than (Signed Operands) Branch if Interrupt Mask Clear Branch if Minus Branch if Interrupt Mask Set
PC (PC) + 2 + rel ? (Z) | (N V) = 1 - - - - - - REL PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 1 PC (PC) + 2 + rel ? (N V) =1 PC (PC) + 2 + rel ? (I) = 0 PC (PC) + 2 + rel ? (N) = 1 PC (PC) + 2 + rel ? (I) = 1 - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 157
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 10-1. Instruction Set Summary (Continued)
Cycles
3 3 3 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 5 4 4 5 4 6 1 2 3 1 1 1 3 2 4
Source Form
BNE rel BPL rel BRA rel
Operation
Description
PC (PC) + 2 + rel ? (Z) = 0 PC (PC) + 2 + rel ? (N) = 0 PC (PC) + 2 + rel
VH I NZC
Branch if Not Equal Branch if Plus Branch Always
- - - - - - REL - - - - - - REL - - - - - - REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) ----- DIR (b4) DIR (b5) DIR (b6) DIR (b7) - - - - - - REL DIR (b0) DIR (b1) DIR (b2) - - - - - DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7) DIR (b0) DIR (b1) DIR (b2) DIR (b3) ------ DIR (b4) DIR (b5) DIR (b6) DIR (b7)
26 2A 20 01 03 05 07 09 0B 0D 0F 21 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
rr rr rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd dd dd dd dd dd dd dd
Freescale Semiconductor, Inc...
BRCLR n,opr,rel Branch if Bit n in M Clear
PC (PC) + 3 + rel ? (Mn) = 0
BRN rel
Branch Never
PC (PC) + 2
BRSET n,opr,rel Branch if Bit n in M Set
PC (PC) + 3 + rel ? (Mn) = 1
BSET n,opr
Set Bit n in M
Mn 1
BSR rel
Branch to Subroutine
PC (PC) + 2; push (PCL) SP (SP) - 1; push (PCH) SP (SP) - 1 PC (PC) + rel PC (PC) + 3 + rel ? (A) - (M) = $00 PC (PC) + 3 + rel ? (A) - (M) = $00 PC (PC) + 3 + rel ? (X) - (M) = $00 PC (PC) + 3 + rel ? (A) - (M) = $00 PC (PC) + 2 + rel ? (A) - (M) = $00 PC (PC) + 4 + rel ? (A) - (M) = $00 C0 I0 M $00 A $00 X $00 H $00 M $00 M $00 M $00
- - - - - - REL
AD
rr
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel Compare and Branch if Equal CBEQ X+,rel CBEQ opr,SP,rel CLC CLI CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Clear Carry Bit Clear Interrupt Mask
DIR IMM IMM ------ IX1+ IX+ SP1 - - - - - 0 INH - - 0 - - - INH DIR INH INH 0 - - 0 1 - INH IX1 IX SP1
31 41 51 61 71 9E61 98 9A
dd rr ii rr ii rr ff rr rr ff rr
Clear
3F dd 4F 5F 8C 6F ff 7F 9E6F ff
Technical Data 158
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Instruction Set Summary
Table 10-1. Instruction Set Summary (Continued)
Cycles
2 3 4 4 3 2 4 5 4 1 1 4 3 5 3 4 2 3 4 4 3 2 4 5 2 dd rr rr rr ff rr rr ff rr 5 3 3 5 4 6 4 1 1 4 3 5 7 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5
Source Form
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP
Operation
Description
VH I NZC
Compare A with M
(A) - (M)
IMM DIR EXT - - IX2 IX1 IX SP1 SP2 DIR INH INH 1 IX1 IX SP1 IMM DIR
A1 B1 C1 D1 E1 F1 9EE1 9ED1
ii dd hh ll ee ff ff ff ee ff
Freescale Semiconductor, Inc...
COM opr COMA COMX COM opr,X COM ,X COM opr,SP CPHX #opr CPHX opr CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP DAA
Complement (One's Complement)
M A X M M M
(M) = $FF - (M) (A) = $FF - (M) (X) = $FF - (M) (M) = $FF - (M) (M) = $FF - (M) (M) = $FF - (M)
0--
33 dd 43 53 63 ff 73 9E63 ff 65 75 A3 B3 C3 D3 E3 F3 9EE3 9ED3 72 3B 4B 5B 6B 7B 9E6B ii ii+1 dd ii dd hh ll ee ff ff ff ee ff
Compare H:X with M
(H:X) - (M:M + 1)
--
Compare X with M
(X) - (M)
IMM DIR EXT - - IX2 IX1 IX SP1 SP2
Decimal Adjust A
(A)10
U - - INH
DBNZ opr,rel DBNZA rel DBNZX rel Decrement and Branch if Not Zero DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP DIV EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP
A (A) - 1 or M (M) - 1 or X (X) - 1 DIR PC (PC) + 3 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 INH PC (PC) + 2 + rel ? (result) 0 - - - - - - INH IX1 PC (PC) + 3 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 IX PC (PC) + 4 + rel ? (result) 0 SP1 M (M) - 1 A (A) - 1 X (X) - 1 M (M) - 1 M (M) - 1 M (M) - 1 A (H:A)/(X) H Remainder DIR INH INH - IX1 IX SP1
Decrement
--
3A dd 4A 5A 6A ff 7A 9E6A ff 52 A8 B8 C8 D8 E8 F8 9EE8 9ED8
Divide
- - - - INH IMM DIR EXT - IX2 IX1 IX SP1 SP2
Exclusive OR M with A
A (A M)
0--
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 159
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 10-1. Instruction Set Summary (Continued)
Cycles
4 1 1 4 3 5 2 3 4 3 2 4 5 6 5 4 2 3 4 4 3 2 4 5 3 4 2 3 4 4 3 2 4 5 4 1 1 4 3 5 4 1 1 4 3 5 5 4 4 4 5
Source Form
INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP LDHX #opr LDHX opr LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr MUL
Operation
Description
M (M) + 1 A (A) + 1 X (X) + 1 M (M) + 1 M (M) + 1 M (M) + 1
VH I NZC
Increment
--
DIR INH INH - IX1 IX SP1
3C dd 4C 5C 6C ff 7C 9E6C ff BC CC DC EC FC BD CD DD ED FD A6 B6 C6 D6 E6 F6 9EE6 9ED6 45 55 AE BE CE DE EE FE 9EEE 9EDE dd hh ll ee ff ff dd hh ll ee ff ff ii dd hh ll ee ff ff ff ee ff ii jj dd ii dd hh ll ee ff ff ff ee ff
Freescale Semiconductor, Inc...
Jump
PC Jump Address
DIR EXT - - - - - - IX2 IX1 IX DIR EXT - - - - - - IX2 IX1 IX IMM DIR EXT - IX2 IX1 IX SP1 SP2 - IMM DIR
Jump to Subroutine
PC (PC) + n (n = 1, 2, or 3) Push (PCL); SP (SP) - 1 Push (PCH); SP (SP) - 1 PC Unconditional Address
Load A from M
A (M)
0--
Load H:X from M
H:X (M:M + 1)
0--
Load X from M
X (M)
0--
IMM DIR EXT IX2 - IX1 IX SP1 SP2
Logical Shift Left (Same as ASL)
C b7 b0
0
DIR INH - - INH IX1 IX SP1 DIR INH INH - - 0 IX1 IX SP1 DD DIX+ IMD IX+D
38 dd 48 58 68 ff 78 9E68 ff 34 dd 44 54 64 ff 74 9E64 ff 4E 5E 6E 7E 42 dd dd dd ii dd dd
Logical Shift Right
0 b7 b0
C
Move
(M)Destination (M)Source H:X (H:X) + 1 (IX+D, DIX+) X:A (X) x (A)
0--
-
Unsigned multiply
- 0 - - - 0 INH
Technical Data 160
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Instruction Set Summary
Table 10-1. Instruction Set Summary (Continued)
Cycles
4 1 1 4 3 5 1 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 2 2 2 2 2 2 4 1 1 4 3 5 4 1 1 4 3 5 1 7 4
Source Form
NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP NOP
Operation
Description
VH I NZC
M -(M) = $00 - (M) A -(A) = $00 - (A) X -(X) = $00 - (X) M -(M) = $00 - (M) M -(M) = $00 - (M) None A (A[3:0]:A[7:4])
Negate (Two's Complement)
DIR INH INH - - IX1 IX SP1
30 dd 40 50 60 ff 70 9E60 ff 9D 62 AA BA CA DA EA FA 9EEA 9EDA 87 8B 89 86 8A 88 39 dd 49 59 69 ff 79 9E69 ff 36 dd 46 56 66 ff 76 9E66 ff 9C
No Operation Nibble Swap A
- - - - - - INH - - - - - - INH IMM DIR EXT IX2 - IX1 IX SP1 SP2
Freescale Semiconductor, Inc...
NSA ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP PSHA PSHH PSHX PULA PULH PULX ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP RSP
Inclusive OR A and M
A (A) | (M)
0--
Push A onto Stack Push H onto Stack Push X onto Stack Pull A from Stack Pull H from Stack Pull X from Stack
Push (A); SP (SP) - 1 Push (H); SP (SP) - 1 Push (X); SP (SP) - 1 SP (SP + 1); Pull (A) SP (SP + 1); Pull (H) SP (SP + 1); Pull (X)
- - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH DIR INH INH - - IX1 IX SP1 DIR INH INH -- IX1 IX SP1
Rotate Left through Carry
C b7 b0
Rotate Right through Carry
b7 b0
C
Reset Stack Pointer
SP $FF SP (SP) + 1; Pull (CCR) SP (SP) + 1; Pull (A) SP (SP) + 1; Pull (X) SP (SP) + 1; Pull (PCH) SP (SP) + 1; Pull (PCL) SP SP + 1; Pull (PCH) SP SP + 1; Pull (PCL)
- - - - - - INH
RTI
Return from Interrupt
INH
80
RTS
Return from Subroutine
- - - - - - INH
81
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 161
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 10-1. Instruction Set Summary (Continued)
Cycles
2 3 4 4 3 2 4 5 1 2 dd hh ll ee ff ff ff ee ff dd 3 4 4 3 2 4 5 4 1 dd hh ll ee ff ff ff ee ff ii dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 9 2 1 1
Source Form
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP
Operation
Description
VH I NZC
Subtract with Carry
A (A) - (M) - (C)
IMM DIR EXT IX2 -- IX1 IX SP1 SP2
A2 B2 C2 D2 E2 F2 9EE2 9ED2 99 9B B7 C7 D7 E7 F7 9EE7 9ED7 35 8E BF CF DF EF FF 9EEF 9EDF A0 B0 C0 D0 E0 F0 9EE0 9ED0
ii dd hh ll ee ff ff ff ee ff
Freescale Semiconductor, Inc...
SEC SEI STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP STHX opr STOP STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP
Set Carry Bit Set Interrupt Mask
C1 I1
- - - - - 1 INH - - 1 - - - INH DIR EXT IX2 - IX1 IX SP1 SP2 - DIR
Store A in M
M (A)
0--
Store H:X in M Enable IRQ Pin; Stop Oscillator
(M:M + 1) (H:X) I 0; Stop Oscillator
0--
- - 0 - - - INH DIR EXT IX2 - IX1 IX SP1 SP2
Store X in M
M (X)
0--
Subtract
A (A) - (M)
IMM DIR EXT - - IX2 IX1 IX SP1 SP2
SWI
Software Interrupt
PC (PC) + 1; Push (PCL) SP (SP) - 1; Push (PCH) SP (SP) - 1; Push (X) SP (SP) - 1; Push (A) SP (SP) - 1; Push (CCR) SP (SP) - 1; I 1 PCH Interrupt Vector High Byte PCL Interrupt Vector Low Byte CCR (A) X (A) A (CCR)
- - 1 - - - INH
83
TAP TAX TPA
Transfer A to CCR Transfer A to X Transfer CCR to A
INH - - - - - - INH - - - - - - INH
84 97 85
Technical Data 162
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Opcode Map
Table 10-1. Instruction Set Summary (Continued)
Cycles
3 1 1 3 2 4 2 1 2
Source Form
TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP TSX
Operation
Description
VH I NZC
Test for Negative or Zero
(A) - $00 or (X) - $00 or (M) - $00
0--
DIR INH INH - IX1 IX SP1
3D dd 4D 5D 6D ff 7D 9E6D ff 95 9F 94
Transfer SP to H:X Transfer X to A Transfer H:X to SP
H:X (SP) + 1 A (X) (SP) (H:X) - 1 n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | () -( ) # ? : --
- - - - - - INH - - - - - - INH - - - - - - INH
Freescale Semiconductor, Inc...
TXA TXS A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N
Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit
Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two's complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected
10.9 Opcode Map
See Table 10-2.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 163
Operand
Address Mode
Opcode
Effect on CCR
Freescale Semiconductor, Inc...
Table 10-2. Opcode Map
Branch REL DIR 3 4 5 6 9E6 7 8 9 A B C D 9ED E 9EE INH SP1 IX IMM DIR EXT IX1 SP1 IX F 2 Read-Modify-Write INH IX1 Control INH INH Register/Memory IX2 SP2
Central Processor Unit (CPU)
Technical Data
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
MSB LSB
164
4 4 4 4 4 4 4 4 4 4 4 4 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 5 SUB SP2 5 CMP SP2 5 SBC SP2 5 CPX SP2 5 AND SP2 5 BIT SP2 5 LDA SP2 5 STA SP2 5 EOR SP2 5 ADC SP2 5 ORA SP2 5 ADD SP2 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 4 4 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL 4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX 7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT 4 SUB IX2 4 CMP IX2 4 SBC IX2 4 CPX IX2 4 AND IX2 4 BIT IX2 4 LDA IX2 4 STA IX2 4 EOR IX2 4 ADC IX2 4 ORA IX2 4 ADD IX2 4 JMP IX2 6 JSR IX2 4 LDX IX2 4 STX IX2 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX SP2 2 IX1 5 3 STX STX SP2 2 IX1 2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX 0 Low Byte of Opcode in Hexadecimal 0 SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment High Byte of Opcode in Hexadecimal 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode
Bit Manipulation DIR DIR
MSB
0
1
LSB
0
1
2
3
4
5
6
7
8
9
A
B
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
C
D
E
F
5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR
4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR
MC68HC908GP32*MC68HC08GP32 -- Rev. 6
Inherent REL Relative Immediate IX Indexed, No Offset Direct IX1 Indexed, 8-Bit Offset Extended IX2 Indexed, 16-Bit Offset Direct-Direct IMD Immediate-Direct Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions
INH IMM DIR EXT DD IX+D
MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 11. FLASH Memory
11.1 Contents
11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 167 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . 168 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Freescale Semiconductor, Inc...
11.3 11.4 11.5 11.6 11.7
11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 11.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . .172 11.9 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.10 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.2 Introduction
This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program, erase, and read operations are enabled through the use of an internal charge pump.
11.3 Functional Description
The FLASH memory is an array of 32,256 bytes with an additional 36 bytes of user vectors and one byte of block protection. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. Memory in the FLASH array is organized into two rows per page basis. For the 32K word by 8-Bit Embedded FLASH Memory, the page size is 128 bytes per
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA FLASH Memory For More Information On This Product, Go to: www.freescale.com Technical Data 165
Freescale Semiconductor, Inc.
FLASH Memory
page. Hence the minimum erase page size is 128 bytes. Program and erase operation operations are facilitated through control bits in FLASH Control Register (FLCR). Details for these operations appear later in this section. The address ranges for the user memory and vectors are: * * * * $8000-$FDFF; user memory. $FF7E; FLASH block protect register. $FE08; FLASH control register. $FFDC-$FFFF; these locations are reserved for user-defined interrupt and reset vectors.
Freescale Semiconductor, Inc...
Programming tools are available from Motorola. Contact your local Motorola representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.1
11.4 FLASH Control Register
The FLASH control register (FLCR) controls FLASH program and erase operations.
Address: $FE08 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 6 0 5 0 4 0 HVEN MASS ERASE PGM 3 2 1 Bit 0
Figure 11-1. FLASH Control Register (FLCR) HVEN -- High-Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Technical Data 166
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 FLASH Memory For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory FLASH Page Erase Operation
MASS -- Mass Erase Control Bit Setting this read/write bit configures the 32Kbyte FLASH array for mass erase operation. 1 = MASS erase operation selected 0 = MASS erase operation unselected ERASE -- Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation unselected PGM -- Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation unselected
Freescale Semiconductor, Inc...
11.5 FLASH Page Erase Operation
Use this step-by-step procedure to erase a page (128 bytes) of FLASH memory to read as logic 1: 1. Set the ERASE bit, and clear the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH address within the page address range desired. 4. Wait for a time, tnvs (min. 10s) 5. Set the HVEN bit. 6. Wait for a time, tErase (min. 1ms) 7. Clear the ERASE bit. 8. Wait for a time, tnvh (min. 5s)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA FLASH Memory For More Information On This Product, Go to: www.freescale.com Technical Data 167
Freescale Semiconductor, Inc.
FLASH Memory
9. Clear the HVEN bit. 10. After a time, trcv (typ. 1s), the memory can be accessed again in read mode.
NOTE:
While these operations must be performed in the order shown, other unrelated operations may occur between the steps.
11.6 FLASH Mass Erase Operation
Freescale Semiconductor, Inc...
Use this step-by-step procedure to erase entire FLASH memory to read as logic 1: 1. Set both the ERASE bit, and the MASS bit in the FLASH control register. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH address* within the FLASH memory address range. 4. Wait for a time, tnvs (min. 10s) 5. Set the HVEN bit. 6. Wait for a time, tMErase (min. 4ms) 7. Clear the ERASE bit. 8. Wait for a time, tnvhl (min. 100s) 9. Clear the HVEN bit. 10. After a time, trcv (min. 1s), the memory can be accessed again in read mode.
* When in Monitor mode, with security sequence failed (see 15.5 Security), write to the FLASH block protect register instead of any FLASH address.
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps.
Technical Data 168
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 FLASH Memory For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory FLASH Program Operation
11.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $0080 and $XXC0. Use this step-by-step procedure to program a row of FLASH memory (Figure 11-2 is a flowchart representation): 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming.
Freescale Semiconductor, Inc...
2. Read from the FLASH block protect register. 3. Write any data to any FLASH address within the row address range desired. 4. Wait for a time, tnvs (min. 10s). 5. Set the HVEN bit. 6. Wait for a time, tpgs (min. 5s). 7. Write data to the FLASH address to be programmed. (See note.) 8. Wait for a time, tPROG (min. 30s). 9. Repeat step 7 and 8 until all the bytes within the row are programmed. 10. Clear the PGM bit. (See note.) 11. Wait for a time, tnvh (min. 5s). 12. Clear the HVEN bit. 13. After time, trcv (min. 1s), the memory can be accessed in read mode again.
NOTE:
The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10), must not exceed the maximum programming time, tPROG max. This program sequence is repeated throughout the memory until all data is programmed.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA FLASH Memory For More Information On This Product, Go to: www.freescale.com
Technical Data 169
Freescale Semiconductor, Inc.
FLASH Memory
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed tPROG maximum. See 23.18 Memory Characteristics
11.8 FLASH Block Protection
Freescale Semiconductor, Inc...
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting a block of memory from unintentional erase or program operations due to system malfunction. This protection is done by using of a FLASH Block Protect Register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.
NOTE:
In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit When the FLBPR is program with all 0's, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1's), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in 11.8.1 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. The FLBPR itself can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also allows entry from reset into the monitor mode.
Technical Data 170
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 FLASH Memory For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory FLASH Block Protection
1
Set PGM bit
Algorithm for programming a row (64 bytes) of FLASH memory
2
Read the FLASH block protect register
3
Write any data to any FLASH address within the row address range desired
4
Wait for a time, tnvs
Freescale Semiconductor, Inc...
5
Set HVEN bit
6
Wait for a time, tpgs
7
Write data to the FLASH address to be programmed
8
Wait for a time, tPROG
Completed programming this row? N
10
Y
NOTE: The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10) must not exceed the maximum programming time, tPROG max. This row program algorithm assumes the row/s to be programmed are initially erased.
Clear PGM bit
11
Wait for a time, tnvh
12
Clear HVEN bit
13
Wait for a time, trcv
End of programming
Figure 11-2. FLASH Programming Flowchart
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA FLASH Memory For More Information On This Product, Go to: www.freescale.com Technical Data 171
Freescale Semiconductor, Inc.
FLASH Memory
11.8.1 FLASH Block Protect Register The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory.
Address: $FF7E Bit 7 Read: BPR7 Write: Reset: U U U U U U U U BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
U = Unaffected by reset. Initial value from factory is 1. Write to this register is by a programming sequence to the FLASH memory.
Figure 11-3. FLASH Block Protect Register (FLBPR) BPR[7:0] -- FLASH Block Protect Bits These eight bits represent bits [14:7] of a 16-bit memory address. Bit-15 is logic 1 and bits [6:0] are logic 0s. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00 and XX80 (128 bytes page boundaries) within the FLASH memory.
16-bit memory address Start address of FLASH block protect 1
FLBPR value
0
0
0
0
0
0
0
Figure 11-4. FLASH Block Protect Start Address
Technical Data 172
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 FLASH Memory For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory Wait Mode
Examples of protect start address:
BPR[7:0] $00 $01 (0000 0001) $02 (0000 0010) and so on... $FE (1111 1110) $FF00 (1111 1111 0000 0000) The entire FLASH memory is not protected. Start of Address of Protect Range The entire FLASH memory is protected. $8080 (1000 0000 1000 0000) $8100 (1000 0001 0000 0000)
Freescale Semiconductor, Inc...
$FF
Note: The end address of the protected range is always $FFFF.
11.9 Wait Mode
Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on Standby Mode.
11.10 Stop Mode
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The STOP instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on Standby Mode
NOTE:
Standby Mode is the power saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA FLASH Memory For More Information On This Product, Go to: www.freescale.com
Technical Data 173
Freescale Semiconductor, Inc.
FLASH Memory
Freescale Semiconductor, Inc...
Technical Data 174
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 FLASH Memory For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 12. External Interrupt (IRQ)
12.1 Contents
12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .179 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 179
Freescale Semiconductor, Inc...
12.3 12.4 12.5 12.6 12.7
12.2 Introduction
The IRQ (external interrupt) module provides a maskable interrupt input.
12.3 Features
Features of the IRQ module include: * * * * * * A dedicated external interrupt pin (IRQ) IRQ interrupt control bits Hysteresis buffer Programmable edge-only or edge and level interrupt sensitivity Automatic interrupt acknowledge Internal pullup resistor
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
Technical Data 175
Freescale Semiconductor, Inc.
External Interrupt (IRQ) 12.4 Functional Description
A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 12-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: * Vector fetch -- A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. Software clear -- Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch. Reset -- A reset automatically clears the interrupt latch.
Freescale Semiconductor, Inc...
*
*
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-leveltriggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin. When an interrupt pin is edge-triggered only, the interrupt remains set until a vector fetch, software clear, or reset occurs. When an interrupt pin is both falling-edge and low-level-triggered, the interrupt remains set until both of the following occur: * * Vector fetch or software clear Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.
Technical Data 176
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
External Interrupt (IRQ) Functional Description
NOTE:
The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests.
RESET ACK INTERNAL ADDRESS BUS VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE IRQ VDD D CLR Q SYNCHRONIZER CK IRQF IRQ INTERRUPT REQUEST TO CPU FOR BIL/BIH INSTRUCTIONS
Freescale Semiconductor, Inc...
IMASK
MODE HIGH VOLTAGE DETECT TO MODE SELECT LOGIC
Figure 12-1. IRQ Module Block Diagram
Addr.
Register Name Read: IRQ Status and Control Register Write: (INTSCR) Reset:
Bit 7 0
6 0
5 0
4 0
3 IRQF
2 0 ACK
1 IMASK 0
Bit 0 MODE 0
$001D
0
0
0
0
0
0
= Unimplemented
Figure 12-2. IRQ I/O Register Summary
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
Technical Data 177
Freescale Semiconductor, Inc.
External Interrupt (IRQ) 12.5 IRQ Pin
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: * Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. Return of the IRQ pin to logic 1 -- As long as the IRQ pin is at logic 0, IRQ remains active.
Freescale Semiconductor, Inc...
*
The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ pin.
Technical Data 178
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
External Interrupt (IRQ) IRQ Module During Break Interrupts
NOTE:
When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine.
12.6 IRQ Module During Break Interrupts
The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during the break state. See Section 6. Break Module (BRK).
Freescale Semiconductor, Inc...
To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect CPU interrupt flags during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ interrupt flags.
12.7 IRQ Status and Control Register
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR: * * * * Shows the state of the IRQ flag Clears the IRQ latch Masks IRQ interrupt request Controls triggering sensitivity of the IRQ interrupt pin
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
Technical Data 179
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
Address:
$001D Bit 7 6 5 4 3 IRQF 2 0 IMASK MODE 0 ACK 0 0 0 0 0 0 0 1 Bit 0
Read: Write: Reset:
= Unimplemented
Figure 12-3. IRQ Status and Control Register (INTSCR)
Freescale Semiconductor, Inc...
IRQF -- IRQ Flag Bit This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK -- IRQ Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as logic 0. Reset clears ACK. IMASK -- IRQ Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE -- IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE. 1 = IRQ interrupt requests on falling edges and low levels 0 = IRQ interrupt requests on falling edges only
Technical Data 180
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 13. Keyboard Interrupt Module (KBI)
13.1 Contents
13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Freescale Semiconductor, Inc...
13.3 13.4 13.5
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .186
13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 13.8.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 187 13.8.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 188
13.2 Introduction
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0-PTA7. When a port pin is enabled for keyboard interrupt function, an internal pullup device is also enabled on the pin.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
Technical Data 181
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) 13.3 Features
* * * * * Eight keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask Hysteresis buffers Programmable edge-only or edge- and level- interrupt sensitivity Exit from low-power modes I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s)
Freescale Semiconductor, Inc...
13.4 Functional Description
Writing to the KBIE7-KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. * If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. If the keyboard interrupt is falling edge- and low-level sensitive, an interrupt request is present as long as any keyboard interrupt pin is low and the pin is keyboard interrupt enabled.
*
Technical Data 182
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc...
INTERNAL BUS
MC68HC908GP32*MC68HC08GP32 -- Rev. 6
VDD RESET . D SYNCHRONIZER CK KEYBOARD INTERRUPT REQUEST Q . KB0IE . IMASKK CLR KEYF ACKK VECTOR FETCH DECODER MODEK KB7IE
MOTOROLA
KBD0
TO PULLUP ENABLE
KBD7
TO PULLUP ENABLE
Figure 13-1. Keyboard Module Block Diagram
Addr. 0 0 0
Register Name
Bit 7
6
5
4 0
3 KEYF
2 0
1 IMASKK ACKK
Bit 0 MODEK 0 0 0 0 0
$001A 0 KBIE7 0 KBIE6 0 0
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
Read: Keyboard Status and Control Register Write: (INTKBSCR) Reset: 0 KBIE5 0 = Unimplemented KBIE4 0 KBIE3 0 KBIE2 0 0
Read: Keyboard Interrupt Enable $001B Register Write: (INTKBIER) Reset:
KBIE1
KBIE0 0
Keyboard Interrupt Module (KBI) Functional Description
Technical Data
Figure 13-2. I/O Register Summary
183
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low-level sensitive, and both of the following actions must occur to clear a keyboard interrupt request: * Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (INTKBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE0 and $FFE1. Return of all enabled keyboard interrupt pins to logic 1 -- As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set.
Freescale Semiconductor, Inc...
*
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register.
Technical Data 184 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) Keyboard Initialization
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin.
13.5 Keyboard Initialization
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore, a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
Technical Data 185
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) 13.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
13.6.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.
Freescale Semiconductor, Inc...
13.6.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.
13.7 Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. (See 13.8.1 Keyboard Status and Control Register.)
Technical Data 186
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) I/O Registers
13.8 I/O Registers
These registers control and monitor operation of the keyboard module: * * Keyboard status and control register (INTKBSCR) Keyboard interrupt enable register (INTKBIER)
13.8.1 Keyboard Status and Control Register
Freescale Semiconductor, Inc...
The keyboard status and control register: * * * *
Address:
Flags keyboard interrupt requests Acknowledges keyboard interrupt requests Masks keyboard interrupt requests Controls keyboard interrupt triggering sensitivity
$001A Bit 7 6 0 5 0 4 0 3 KEYF 2 0 IMASKK MODEK 0 ACKK 0 0 0 0 0 0 0 1 Bit 0
Read: Write: Reset:
0
= Unimplemented
Figure 13-3. Keyboard Status and Control Register (INTKBSCR) Bits 7-4 -- Not used These read-only bits always read as logic 0s. KEYF -- Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
Technical Data 187
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
ACKK -- Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK -- Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK -- Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only
Freescale Semiconductor, Inc...
13.8.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register enables or disables each port A pin to operate as a keyboard interrupt pin.
Address: $001B Bit 7 Read: KBIE7 Write: Reset: 0 0 0 0 0 0 0 0 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 6 5 4 3 2 1 Bit 0
Figure 13-4. Keyboard Interrupt Enable Register (INTKBIER) KBIE7-KBIE0 -- Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = PTAx pin enabled as keyboard interrupt pin 0 = PTAx pin not enabled as keyboard interrupt pin
Technical Data 188
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 14. Low-Voltage Inhibit (LVI)
14.1 Contents
14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Freescale Semiconductor, Inc...
14.3
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 14.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 14.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 192 14.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.5 14.6 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 14.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 14.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.2 Introduction
This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF.
14.3 Features
Features of the LVI module include: * * * Programmable LVI reset Selectable LVI trip voltage Programmable stop mode operation
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com
Technical Data 189
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI) 14.4 Functional Description
Figure 14-1 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be configured for 3-V operation. The actual trip points are shown in Section 23. Electrical Specifications.
Freescale Semiconductor, Inc...
NOTE:
After a power-on reset (POR) the LVI's default mode of operation is 3 V. If a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V operation. Note that this must be done after every poweron reset since the default will revert back to 3-V mode after each poweron reset. If the VDD supply is below the 5-V mode trip voltage but above the 3-V mode trip voltage when POR is released, the part will operate because VTRIPF defaults to 3-V mode after a POR. So, in a 5-V system care must be taken to ensure that VDD is above the 5-V mode trip voltage after POR is released. If the user requires 5-V mode and sets the LVI5OR3 bit after a power-on reset while the VDD supply is not above the VTRIPR for 5-V mode, the MCU will immediately go into reset. The LVI in this case will hold the part in reset until either VDD goes above the rising 5-V trip point, VTRIPR, which will release reset or VDD decreases to approximately 0 V which will re-trigger the power-on reset and reset the trip point to 3-V operation. LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register (CONFIG1). See 8.3 Functional Description for details of the LVI's configuration bits. Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See 19.4.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the SIM and the LVI. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR).
NOTE:
Technical Data 190
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI) Functional Description
An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.
VDD STOP INSTRUCTION LVISTOP FROM CONFIG1 FROM CONFIG1 LVIRSTD
Freescale Semiconductor, Inc...
LVIPWRD FROM CONFIG LOW VDD DETECTOR VDD > LVITrip = 0 VDD LVITrip = 1 LVIOUT LVI5OR3 FROM CONFIG1 LVI RESET
Figure 14-1. LVI Module Block Diagram
Addr.
Register Name LVI Status Register Write: (LVISR) Reset:
Bit 7 Read: LVIOUT
6 0
5 0
4 0
3 0
2 0
1 0
Bit 0 0
$FE0C
0
0
0
0
0
0
0
0
= Unimplemented
Figure 14-2. LVI I/O Register Summary 14.4.1 Polled LVI Operation In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling the LVIOUT bit. In the configuration register, the LVIPWRD bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI resets.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com
Technical Data 191
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI)
14.4.2 Forced Reset Operation In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets.
14.4.3 Voltage Hysteresis Protection
Freescale Semiconductor, Inc...
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS.
14.4.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection.
NOTE:
The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. (See Section 23. Electrical Specifications for the actual trip point voltages.)
Technical Data 192
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI) LVI Status Register
14.5 LVI Status Register
The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level.
Address: $FE0C Bit 7 Read: LVIOUT 6 0 5 0 4 0 3 0 2 0 1 0 Bit 0 0
Freescale Semiconductor, Inc...
Write: Reset: 0 0 0 0 0 0 0 0
= Unimplemented
Figure 14-3. LVI Status Register (LVISR) LVIOUT -- LVI Output Bit This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage. (See Table 14-1.) Reset clears the LVIOUT bit. Table 14-1. LVIOUT Bit Indication
VDD VDD > VTRIPR VDD < VTRIPF VTRIPF < VDD < VTRIPR LVIOUT 0 1 Previous value
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Low-Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com
Technical Data 193
Freescale Semiconductor, Inc.
Low-Voltage Inhibit (LVI) 14.6 LVI Interrupts
The LVI module does not generate interrupt requests.
14.7 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
Freescale Semiconductor, Inc...
14.7.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode.
14.7.2 Stop Mode If enabled in stop mode (LVISTOP set), the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode.
Technical Data 194
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Low-Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 15. Monitor ROM (MON)
15.1 Contents
15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Freescale Semiconductor, Inc...
15.3
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
15.2 Introduction
This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 195
Freescale Semiconductor, Inc.
Monitor ROM (MON) 15.3 Features
Features of the monitor ROM include: * * * Normal user-mode pin functionality One pin dedicated to serial communication between monitor ROM and host computer Standard mark/space non-return-to-zero (NRZ) communication with host computer Execution of code in RAM or FLASH FLASH memory security feature1 FLASH memory programming interface Enhanced PLL (phase-locked loop) option to allow use of external 32.768-kHz crystal to generate internal frequency of 2.4576 MHz 307 bytes monitor ROM code size ($FE20 to $FF52) Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) Standard monitor mode entry if high voltage, VTST, is applied to IRQ
Freescale Semiconductor, Inc...
* * * * * * *
15.4 Functional Description
The monitor ROM receives and executes commands from a host computer. Figure 15-1 shows an example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Technical Data 196
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
68HC908GP32 RST 0.1 F VTST (SEE NOTE 3) 10 k C D SW2 (SEE NOTES 2 AND 3) IRQ VDD VDDA CGMXFC $FFFF
RESET VECTORS $FFFE
Freescale Semiconductor, Inc...
10 k 0.033 F
C 1 10 F + 3 4 10 F + MC145407 20 + 18 32.768 kHz XTAL 17 + 2 19 10 F VDD 330 k 6-30 pF D 10 F 6-30 pF 10 M D C SW4 (SEE NOTE 2) SW3 (SEE NOTE 2)
0.01 F
OSC1 OSC2 PTA7 VSS VSSAD VSSA VDD VDDAD VDD PTA0 PTC3 VDD PTC0 PTC1
DB-25 2 3 7
5 6
16 15
VDD
0.1 F VDD 1 2 6 4 MC74HC125 14 3 5 VDD
10 k
7 A (SEE NOTE 1) SW1 B
Notes: 1. For monitor mode entry when IRQ = VTST: SW1: Position A -- Bus clock = CGMXCLK / 4 or CGMVCLK / 4 SW1: Position B -- Bus clock = CGMXCLK / 2 2. SW2, SW3, and SW4: Position C -- Enter monitor mode using external oscillator. SW2, SW3, and SW4: Position D -- Enter monitor mode using external XTAL and internal PLL. 3. See Table 15-1 for IRQ voltage level requirements.
Figure 15-1. Monitor Mode Circuit
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com Technical Data 197
Freescale Semiconductor, Inc.
Monitor ROM (MON)
between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. The monitor code has been updated from previous versions of the monitor code to allow enabling the PLL to generate the internal clock, provided the reset vector is blank, when the device is being clocked by a low-frequency crystal. This addition, which is enabled when IRQ is held low out of reset, is intended to support serial communication/ programming at 9600 baud in monitor mode by stepping up the external frequency (assumed to be 32.768 kHz) by a fixed amount to generate the desired internal frequency (2.4576 MHz). Since this feature is enabled only when IRQ is held low out of reset, it cannot be used when the reset vector is not blank because entry into monitor mode in this case requires VTST on IRQ.
Freescale Semiconductor, Inc...
15.4.1 Entering Monitor Mode Table 15-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR and will allow communication at 9600 baud provided one of the following sets of conditions is met: 1. If $FFFE and $FFFF does not contain $FF (programmed state): - The external clock is 4.9152 MHz with PTC3 low or 9.8304 MHz with PTC3 high - IRQ = VTST (PLL off) 2. If $FFFE and $FFFF contain $FF (erased state): - The external clock is 9.8304 MHz - IRQ = VDD (this can be implemented through the internal IRQ pullup; PLL off) 3. If $FFFE and $FFFF contain $FF (erased state): - The external clock is 32.768 kHz (crystal) - IRQ = VSS (this setting initiates the PLL to boost the external 32.768 kHz to an internal bus frequency of 2.4576 MHz) If VTST is applied to IRQ and PTC3 is low upon monitor mode entry (above condition set 1), the bus frequency is a divide-by-two of the input clock. If PTC3 is high with VTST applied to IRQ upon monitor mode entry, the bus frequency will be a divide-by-four of the input clock. Holding the
Technical Data 198 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6
MOTOROLA
Table 15-1. Monitor Mode Signal Requirements and Options
For Serial Communication COP PTA0 X X X X X 0 0 Disabled X X 0 PTA7 Baud Rate(2) (3) No operation until reset goes high Comment
IRQ PLL PTC0 PTC1 PTC3
RESET
$FFFE/ $FFFF CGMOUT
External Clock(1) Bus Frequency
X
GND
X
VTST X 1 DNA
VDD or VTST
X
OFF
1
0
0
4.9152 MHz
4.9152 MHz
2.4576 MHz
Disabled
1
0
9600
PTC0 and PTC1 voltages only required if IRQ = VTST; PTC3 determines frequency divider 9600
VTST X
VDD or VTST
X
OFF
1
0
1
9.8304 MHz
4.9152 MHz
2.4576 MHz
Disabled
1
0
1
DNA
PTC0 and PTC1 voltages only required if IRQ = VTST; PTC3 determines frequency divider 1 X 0 1 9600 DNA External frequency always divided by 4 1 X 0 1 9600 DNA PLL enabled (BCS set) in monitor code
VDD
VDD
$FF (blank) ON X X X 32.768 kHz 4.9152 MHz 2.4576 MHz
OFF
X
X
X
9.8304 MHz
4.9152 MHz
2.4576 MHz
Disabled
GND
VDD
$FF (blank)
Disabled
Freescale Semiconductor, Inc.
Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
OFF X X X X -- -- Enabled X X OFF X X X X -- -- Enabled X X
VDD or GND
VTST
$FF (blank)
--
Enters user mode -- will encounter an illegal address reset -- Enters user mode
VDD or GND
VDD or VTST
Not $FF (programmed)
Monitor ROM (MON) Functional Description
Notes: 1. External clock is derived by a 32.768 kHz crystal or a 4.9152/9.8304 MHz off-chip oscillator 2. PTA0 = 1 if serial communication; PTA0 = X if parallel communication 3. PTA7 = 0 serial, PTA7 = 1 parallel communication for security code entry 4. DNA = does not apply, X = don't care
Technical Data
199
Freescale Semiconductor, Inc.
Monitor ROM (MON)
PTC3 pin low when entering monitor mode causes a bypass of a divideby-two stage at the oscillator only if VTST is applied to IRQ. In this event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. If entering monitor mode without high voltage on IRQ (above condition set 2 or 3, where applied voltage is either VDD or VSS), then all port C pin requirements and conditions, including the PTC3 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming.
Freescale Semiconductor, Inc...
NOTE:
If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial POR reset. Once the part has been programmed, the traditional method of applying a voltage, VTST, to IRQ must be used to enter monitor mode. The COP module is disabled in monitor mode based on these conditions: * If monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the COP is always disabled regardless of the state of IRQ or RST. If monitor mode was entered with VTST on IRQ (condition set 1), then the COP is disabled as long as VTST is applied to either IRQ or RST.
*
The second condition states that as long as VTST is maintained on the IRQ pin after entering monitor mode, or if VTST is applied to RST after the initial reset to get into monitor mode (when VTST was applied to IRQ), then the COP will be disabled. In the latter situation, after VTST is applied to the RST pin, VTST can be removed from the IRQ pin in the interest of freeing the IRQ for normal functionality in monitor mode. Figure 15-2 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x VDD voltage is applied to the IRQ pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four.
Technical Data 200
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
POR RESET
IS VECTOR BLANK? YES
NO
NORMAL USER MODE
MONITOR MODE
Freescale Semiconductor, Inc...
EXECUTE MONITOR CODE
POR TRIGGERED?
NO
YES
Figure 15-2. Low-Voltage Monitor Mode Entry Flowchart Enter monitor mode with pin configuration shown in Figure 15-1 by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes. (See 15.5 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command.
NOTE:
The PTA7 pin must remain at logic 0 for 24 bus cycles after the RST pin goes high to enter monitor mode properly. In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code.
NOTE:
Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (POR). Pulling RST low will not exit monitor mode in this situation.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 201
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Table 15-2 summarizes the differences between user mode and monitor mode. Table 15-2. Mode Differences
Functions Modes Reset Vector High $FFFE $FEFE Reset Vector Low $FFFF $FEFF Break Vector High $FFFC $FEFC Break Vector Low $FFFD $FEFD SWI Vector High $FFFC $FEFC SWI Vector Low $FFFD $FEFD
User
Freescale Semiconductor, Inc...
Monitor
15.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical.
START BIT 0 BIT
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STOP BIT
NEXT START BIT
Figure 15-3. Monitor Data Format
15.4.3 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.
MISSING STOP BIT 2-STOP BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 15-4. Break Transaction
Technical Data 202
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
15.4.4 Baud Rate The communication baud rate is controlled by the crystal frequency and the state of the PTC3 pin (when IRQ is set to VTST) upon entry into monitor mode. When PTC3 is high, the divide by ratio is 1024. If the PTC3 pin is at logic 0 upon entry into monitor mode, the divide by ratio is 512. If monitor mode was entered with VDD on IRQ, then the divide by ratio is set at 1024, regardless of PTC3. If monitor mode was entered with VSS on IRQ, then the internal PLL steps up the external frequency, presumed to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor mode entry require that the reset vector is blank. Table 15-3 lists external frequencies required to achieve a standard baud rate of 9600 BPS. Other standard baud rates can be accomplished using proportionally higher or lower frequency generators. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 23.8 5.0-V Control Timing and 23.9 3.0-V Control Timing for this limit. Table 15-3. Monitor Baud Rate Selection
External Frequency 4.9152 MHz 9.8304 MHz 9.8304 MHz 32.768 kHz IRQ VTST VTST VDD VSS PTC3 0 1 X X Internal Frequency 2.4576 MHz 2.4576 MHz 2.4576 MHz 2.4576 MHz Baud Rate (BPS) 9600 9600 9600 9600
Freescale Semiconductor, Inc...
15.4.5 Commands
The monitor ROM firmware uses these commands: * * * READ (read memory) WRITE (write memory) IREAD (indexed read)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 203
Freescale Semiconductor, Inc.
Monitor ROM (MON)
* * * IWRITE (indexed write) READSP (read stack pointer) RUN (run user program)
Freescale Semiconductor, Inc...
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command.
NOTE:
Wait one bit time after each echo before sending the next byte.
FROM HOST
READ
READ
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
4 ECHO
1
4
1
4
1
3, 2
4 RETURN
Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte.
Figure 15-5. Read Transaction
FROM HOST
WRITE 3 ECHO 1
WRITE 3
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
DATA
1
3
1
3
1
2, 3
Notes: 1 = Echo delay, 2 bit times 2 = Cancel command delay, 11 bit times 3 = Wait 1 bit time before sending next byte.
Figure 15-6. Write Transaction
Technical Data 204
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
A brief description of each monitor mode command is given in Table 15-4 through Table 15-9. Table 15-4. READ (Read Memory) Command
Description Operand Data Returned Read byte from memory 2-byte address in high-byte:low-byte order Returns contents of specified address $4A Command Sequence
SENT TO MONITOR
Freescale Semiconductor, Inc...
Opcode
READ
READ
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
ECHO
RETURN
Table 15-5. WRITE (Write Memory) Command
Description Operand Data Returned Opcode Write byte to memory 2-byte address in high-byte:low-byte order; low byte followed by data byte None $49 Command Sequence
FROM HOST
WRITE
WRITE
ADDRESS HIGH
ADDRESS HIGH
ADDRESS LOW
ADDRESS LOW
DATA
DATA
ECHO
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 205
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Table 15-6. IREAD (Indexed Read) Command
Description Operand Data Returned Opcode Read next 2 bytes in memory from last address accessed 2-byte address in high byte:low byte order Returns contents of next two addresses $1A Command Sequence
FROM HOST
Freescale Semiconductor, Inc...
IREAD
IREAD
DATA
DATA
ECHO
RETURN
Table 15-7. IWRITE (Indexed Write) Command
Description Operand Data Returned Opcode Write to last address accessed + 1 Single data byte None $19 Command Sequence
FROM HOST
IWRITE
IWRITE
DATA
DATA
ECHO
Technical Data 206
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map. Table 15-8. READSP (Read Stack Pointer) Command
Description Operand Data Returned Reads stack pointer None Returns incremented stack pointer value (SP + 1) in high-byte:lowbyte order $0C Command Sequence
FROM HOST
Freescale Semiconductor, Inc...
Opcode
READSP
READSP
SP HIGH
SP LOW
ECHO
RETURN
Table 15-9. RUN (Run User Program) Command
Description Operand Data Returned Opcode Executes PULH and RTI instructions None None $28 Command Sequence
FROM HOST
RUN
RUN
ECHO
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 207
Freescale Semiconductor, Inc.
Monitor ROM (MON)
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6.
Freescale Semiconductor, Inc...
SP HIGH BYTE OF INDEX REGISTER CONDITION CODE REGISTER ACCUMULATOR LOW BYTE OF INDEX REGISTER SP + 1 SP + 2 SP + 3 SP + 4
HIGH BYTE OF PROGRAM COUNTER SP + 5 LOW BYTE OF PROGRAM COUNTER SP + 6 SP + 7
Figure 15-7. Stack Pointer at Monitor Mode Entry
15.5 Security
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6-$FFFD. Locations $FFF6-$FFFD contain userdefined data.
NOTE:
Do not leave locations $FFF6-$FFFD blank. For security reasons, program locations $FFF6-$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations $FFF6-$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 15-8.)
Technical Data 208
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Security
VDD 4096 + 32 CGMXCLK CYCLES RST 24 BUS CYCLES PTA7 256 BUS CYCLES (MINIMUM) BYTE 1 BYTE 2 BYTE 8 COMMAND 2 BYTE 8 ECHO 4 1 COMMAND ECHO BREAK
FROM HOST
Freescale Semiconductor, Inc...
PTA0 1 BYTE 1 ECHO FROM MCU 4 1 BYTE 2 ECHO 1
NOTES: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 4 = Wait 1 bit time before sending next byte.
Figure 15-8. Monitor Mode Entry Timing Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6-$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.
NOTE:
The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 209
Freescale Semiconductor, Inc.
Monitor ROM (MON)
failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank).
Freescale Semiconductor, Inc...
Technical Data 210
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 16. Input/Output (I/O) Ports
16.1 Contents
16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Freescale Semiconductor, Inc...
16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 16.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 16.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 216 16.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 218 16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 16.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 16.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 220 16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 16.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 16.5.2 Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . . 223 16.5.3 Port C Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 225 16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 16.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 16.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 228 16.6.3 Port D Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 230 16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 16.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 16.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . 232
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 211
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports 16.2 Introduction
Thirty-three (33) bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs. All individual bits within port A, port C, and port D are software configurable with pullup devices if configured as input port bits. The pullup devices are automatically and dynamically disabled when a port bit is switched to output mode.
NOTE:
Freescale Semiconductor, Inc...
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage.
Bit 7 Read: PTA7 6 PTA6 5 PTA5 4 PTA4 3 PTA3 2 PTA2 1 PTA1 Bit 0 PTA0
Addr.
Register Name Port A Data Register Write: (PTA) Reset: Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset: Read:
$0000
Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Unaffected by reset 0 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0
$0002
Unaffected by reset PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0
$0003
Unaffected by reset DDRA6 0 DDRA5 0 DDRA4 0 DDRA3 0 DDRA2 0 DDRA1 0 DDRA0 0
$0004
DDRA7 Data Direction Register A Write: (DDRA) Reset: 0
= Unimplemented
Figure 16-1. I/O Port Register Summary
Technical Data 212
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Introduction
Addr.
Register Name Read:
Bit 7
6 DDRB6 0 DDRC6
5 DDRB5 0 DDRC5 0 DDRD5 0 0
4 DDRB4 0 DDRC4 0 DDRD4 0 0
3 DDRB3 0 DDRC3 0 DDRD3 0 0
2 DDRB2 0 DDRC2 0 DDRD2 0 0
1 DDRB1 0 DDRC1 0 DDRD1 0 PTE1
Bit 0 DDRB0 0 DDRC0 0 DDRD0 0 PTE0
$0005
DDRB7 Data Direction Register B Write: (DDRB) Reset: 0 Read: 0 Data Direction Register C Write: (DDRC) Reset: Read:
$0006
0
0 DDRD6 0 0
Freescale Semiconductor, Inc...
$0007
DDRD7 Data Direction Register D Write: (DDRD) Reset: 0 Read: 0 Port E Data Register Write: (PTE) Reset: Read: 0
$0008
Unaffected by reset 0 0 0 0 0 DDRE1 0 0 0 0 0 0 0 DDRE0 0
$000C
Data Direction Register E Write: (DDRE) Reset:
Read: Port A Input Pullup Enable PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 $000D Register Write: (PTAPUE) Reset: 0 0 0 0 0 0 0 0 Read: Port C Input Pullup Enable $000E Register Write: (PTCPUE) Reset: 0 PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0 0 0 0 0 0 0 0 0
Read: Port D Input Pullup Enable PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0 $000F Register Write: (PTDPUE) Reset: 0 0 0 0 0 0 0 0 = Unimplemented
Figure 16-1. I/O Port Register Summary (Continued)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 213
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Table 16-1. Port Control Register Bits Summary
Port Bit 0 1 2 A 3 4 5 6 DDR DDRA0 DDRA1 DDRA2 DDRA3 DDRA4 DDRA5 DDRA6 DDRA7 DDRB0 DDRB1 DDRB2 DDRB3 DDRB4 DDRB5 DDRB6 DDRB7 DDRC0 DDRC1 DDRC2 DDRC3 DDRC4 DDRC5 DDRC6 DDRD0 DDRD1 DDRD2 DDRD3 DDRD4 DDRD5 DDRD6 DDRD7 DDRE0 DDRE1 TIM1 ELS0B:ELS0A ELS1B:ELS1A ELS0B:ELS0A ELS1B:ELS1A ENSCI SPI SPE ADC ADCH4-ADCH0 KBD Module Control KBIE0 KBIE1 KBIE2 KBIE3 KBIE4 KBIE5 KBIE6 KBIE7 Pin PTA0/KBD0 PTA1/KBD1 PTA2/KBD2 PTA3/KBD3 PTA4/KBD4 PTA5/KBD5 PTA6/KBD6 PTA7/KBD7 PTB0/AD0 PTB1/AD1 PTB2/AD2 PTB3/AD3 PTB4/AD4 PTB5/AD5 PTB6/AD6 PTB7/AD7 PTC0 PTC1 PTC2 PTC3 PTC4 PTC5 PTC6 PTD0/SS PTD1/MISO PTD2/MOSI PTD3/SPSCK PTD4/T1CH0 PTD5/T1CH1 PTD6/T2CH0 PTD7/T2CH1 PTE0/TxD PTE1/RxD
Freescale Semiconductor, Inc...
7 0 1 2 B 3 4 5 6 7 0 1 2 C 3 4 5 6 0 1 2 D 3 4 5 6 7 E 0 1
TIM2
SCI
Technical Data 214
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port A
16.3 Port A
Port A is an 8-bit special-function port that shares all eight of its pins with the keyboard interrupt (KBI) module. Port A also has software configurable pullup devices if configured as an input port.
16.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the eight port A pins.
Address: $0000 Bit 7 Read: PTA7 Write: Reset: Alternate Function: KBD7 KBD6 KBD5 Unaffected by reset KBD4 KBD3 KBD2 KBD1 KBD0 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 16-2. Port A Data Register (PTA) PTA7-PTA0 -- Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. KBD7-KBD0 -- Keyboard Inputs The keyboard interrupt enable bits, KBIE7-KBIE0, in the keyboard interrupt control register (KBICR) enable the port A pins as external interrupt pins. See Section 13. Keyboard Interrupt Module (KBI).
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 215
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
16.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.
Address: $0004 Bit 7 6 DDRA6 0 5 DDRA5 0 4 DDRA4 0 3 DDRA3 0 2 DDRA2 0 1 DDRA1 0 Bit 0 DDRA0 0
Freescale Semiconductor, Inc...
Read: DDRA7 Write: Reset: 0
Figure 16-3. Data Direction Register A (DDRA) DDRA7-DDRA0 -- Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA7-DDRA0, configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input
NOTE:
Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 16-4 shows the port A I/O logic.
Technical Data 216
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port A
READ DDRA ($0004)
INTERNAL DATA BUS
WRITE DDRA ($0004) DDRAx RESET WRITE PTA ($0000) PTAx VDD PTAPUEx PTAx
Freescale Semiconductor, Inc...
READ PTA ($0000)
INTERNAL PULLUP DEVICE
Figure 16-4. Port A I/O Circuit When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-2 summarizes the operation of the port A pins. Table 16-2. Port A Pin Functions
PTAPUE Bit DDRA Bit PTA Bit I/O Pin Mode Accesses to DDRA Read/Write 1 0 X 0 0 1 X(1) X X Input, VDD(4) Input, Hi-Z(2) Output DDRA7-DDRA0 DDRA7-DDRA0 DDRA7-DDRA0 Accesses to PTA Read Pin Pin PTA7-PTA0 Write PTA7-PTA0(3) PTA7-PTA0(3) PTA7-PTA0
NOTES: 1. X = Don't care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. 4. I/O pin pulled up to VDD by internal pullup device
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 217
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
16.3.3 Port A Input Pullup Enable Register The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each of the eight port A pins. Each bit is individually configurable and requires that the data direction register, DDRA, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRA is configured for output mode.
Address: $000D Bit 7 Read: PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Write: Reset: 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 16-5. Port A Input Pullup Enable Register (PTAPUE) PTAPUE7-PTAPUE0 -- Port A Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. 1 = Corresponding port A pin configured to have internal pullup 0 = Corresponding port A pin has internal pullup disconnected
Technical Data 218
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port B
16.4 Port B
Port B is an 8-bit special-function port that shares all eight of its pins with the analog-to-digital converter (ADC) module.
16.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port pins.
Freescale Semiconductor, Inc...
Address:
$0001 Bit 7 6 PTB6 5 PTB5 4 PTB4 3 PTB3 2 PTB2 1 PTB1 Bit 0 PTB0
Read: PTB7 Write: Reset: Alternate Function: AD7 AD6 AD5 Unaffected by reset AD4 AD3 AD2 AD1 AD0
Figure 16-6. Port B Data Register (PTB) PTB7-PTB0 -- Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. AD7-AD0 -- Analog-to-Digital Input Bits AD7-AD0 are pins used for the input channels to the analog-to-digital converter module. The channel select bits in the ADC status and control register define which port B pin will be used as an ADC input and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry.
NOTE:
Care must be taken when reading port B while applying analog voltages to AD7-AD0 pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTBx/ADx pin, while PTB is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports.
Technical Data 219
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
16.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.
Address: $0005 Bit 7 6 DDRB6 0 5 DDRB5 0 4 DDRB4 0 3 DDRB3 0 2 DDRB2 0 1 DDRB1 0 Bit 0 DDRB0 0
Freescale Semiconductor, Inc...
Read: DDRB7 Write: Reset: 0
Figure 16-7. Data Direction Register B (DDRB) DDRB7-DDRB0 -- Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB7-DDRB0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input
NOTE:
Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 16-8 shows the port B I/O logic.
READ DDRB ($0005)
INTERNAL DATA BUS
WRITE DDRB ($0005) RESET WRITE PTB ($0001) PTBx PTBx DDRBx
READ PTB ($0001)
Figure 16-8. Port B I/O Circuit
Technical Data 220
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port B
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-3 summarizes the operation of the port B pins. Table 16-3. Port B Pin Functions
DDRB Bit PTB Bit I/O Pin Mode Accesses to DDRB Read/Write 0 1 X(1) X Input, Hi-Z(2) Output DDRB7-DDRB0 DDRB7-DDRB0 Accesses to PTB Read Pin PTB7-PTB0 Write PTB7-PTB0(3) PTB7-PTB0
Freescale Semiconductor, Inc...
Notes: 1. X = Don't care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 221
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports 16.5 Port C
Port C is a 7-bit, general-purpose bidirectional I/O port. Port C also has software configurable pullup devices if configured as an input port.
16.5.1 Port C Data Register The port C data register (PTC) contains a data latch for each of the seven port C pins.
Freescale Semiconductor, Inc...
NOTE:
Bit 6 and bit 5 of PTC are not available in a 40-pin dual in-line package and 42-pin shrink dual in-line package.
Address: $0002 Bit 7 Read: Write: Reset: = Unimplemented Unaffected by reset 0 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 6 5 4 3 2 1 Bit 0
Figure 16-9. Port C Data Register (PTC) PTC6-PTC0 -- Port C Data Bits These read/write bits are software-programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data.
Technical Data 222
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port C
16.5.2 Data Direction Register C Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer.
Address: $0006 Bit 7 6 DDRC6 Write: Reset: 0 0 0 0 0 0 0 0 5 DDRC5 4 DDRC4 3 DDRC3 2 DDRC2 1 DDRC1 Bit 0 DDRC0
Freescale Semiconductor, Inc...
Read:
0
= Unimplemented
Figure 16-10. Data Direction Register C (DDRC) DDRC6-DDRC0 -- Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC6-DDRC0, configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input
NOTE:
Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. Figure 16-11 shows the port C I/O logic.
NOTE:
For those devices packaged in a 40-pin dual in-line package and 42-pin shrink dual in-line package, PTC5 and PTC6 are connected to ground internally. DDRC5 and DDRC6 should be set to a 0 to configure PTC5 and PTC6 as inputs.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 223
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
READ DDRC ($0006)
INTERNAL DATA BUS
WRITE DDRC ($0006) DDRCx RESET WRITE PTC ($0002) PTCx VDD PTCPUEx PTCx
Freescale Semiconductor, Inc...
READ PTC ($0002)
INTERNAL PULLUP DEVICE
Figure 16-11. Port C I/O Circuit When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-4 summarizes the operation of the port C pins. Table 16-4. Port C Pin Functions
Accesses to DDRC PTCPUE Bit 1 0 X DDRC Bit 0 0 1 PTC Bit X(1) X X I/O Pin Mode Read/Write Input, VDD(4) Input, Hi-Z(2) Output DDRC6-DDRC0 DDRC6-DDRC0 DDRC6-DDRC0 Read Pin Pin PTC6-PTC0 Write PTC6-PTC0(3) PTC6-PTC0(3) PTC6-PTC0 Accesses to PTC
Notes: 1. X = Don't care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. 4. I/O pin pulled up to VDD by internal pullup device.
Technical Data 224
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port C
16.5.3 Port C Input Pullup Enable Register The port C input pullup enable register (PTCPUE) contains a software configurable pullup device for each of the seven port C pins. Each bit is individually configurable and requires that the data direction register, DDRC, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRC is configured for output mode.
Address: $000E Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 0 PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
= Unimplemented
Figure 16-12. Port C Input Pullup Enable Register (PTCPUE) PTCPUE6-PTCPUE0 -- Port C Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. 1 = Corresponding port C pin configured to have internal pullup 0 = Corresponding port C pin internal pullup disconnected
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 225
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports 16.6 Port D
Port D is an 8-bit special-function port that shares four of its pins with the serial peripheral interface (SPI) module and four of its pins with two timer interface (TIM1 and TIM2) modules. Port D also has software configurable pullup devices if configured as an input port.
16.6.1 Port D Data Register
Freescale Semiconductor, Inc...
The port D data register (PTD) contains a data latch for each of the eight port D pins.
NOTE:
Bit 7 and bit 6 of PTD are not available in a 40-pin dual in-line package.
Address: $0003 Bit 7 Read: PTD7 Write: Reset: Alternate Function: T2CH1 T2CH0 T1CH1 Unaffected by reset T1CH0 SPSCK MOSI MISO SS PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 6 5 4 3 2 1 Bit 0
Figure 16-13. Port D Data Register (PTD) PTD7-PTD0 -- Port D Data Bits These read/write bits are software-programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. T2CH1 and T2CH0 -- Timer 2 Channel I/O Bits The PTD7/T2CH1-PTD6/T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD7/T2CH1-PTD6/T2CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Section 22. Timer Interface Module (TIM).
Technical Data 226
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port D
T1CH1 and T1CH0 -- Timer 1 Channel I/O Bits The PTD7/T1CH1-PTD6/T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select bits, ELSxB and ELSxA, determine whether the PTD7/T1CH1-PTD6/T1CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Section 22. Timer Interface Module (TIM). SPSCK -- SPI Serial Clock The PTD3/SPSCK pin is the serial clock input of the SPI module. When the SPE bit is clear, the PTD3/SPSCK pin is available for general-purpose I/O. MOSI -- Master Out/Slave In The PTD2/MOSI pin is the master out/slave in terminal of the SPI module. When the SPE bit is clear, the PTD2/MOSI pin is available for general-purpose I/O. MISO -- Master In/Slave Out The PTD1/MISO pin is the master in/slave out terminal of the SPI module. When the SPI enable bit, SPE, is clear, the SPI module is disabled, and the PTD0/SS pin is available for general-purpose I/O. Data direction register D (DDRD) does not affect the data direction of port D pins that are being used by the SPI module. However, the DDRD bits always determine whether reading port D returns the states of the latches or the states of the pins. See Table 16-5. SS -- Slave Select The PTD0/SS pin is the slave select input of the SPI module. When the SPE bit is clear, or when the SPI master bit, SPMSTR, is set, the PTD0/SS pin is available for general-purpose I/O. When the SPI is enabled, the DDRB0 bit in data direction register B (DDRB) has no effect on the PTD0/SS pin.
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 227
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
16.6.2 Data Direction Register D Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer.
Address: $0007 Bit 7 6 DDRD6 0 5 DDRD5 0 4 DDRD4 0 3 DDRD3 0 2 DDRD2 0 1 DDRD1 0 Bit 0 DDRD0 0
Freescale Semiconductor, Inc...
Read: DDRD7 Write: Reset: 0
Figure 16-14. Data Direction Register D (DDRD) DDRD7-DDRD0 -- Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD7-DDRD0, configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input
NOTE:
Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 16-15 shows the port D I/O logic.
NOTE:
For those devices packaged in a 40-pin dual in-line package, PTD6 and PTD7 are not connected. DDRD6 and DDRD7 should be set to a 1 to configure PTD6 and PTD7 as outputs.
Technical Data 228
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port D
READ DDRD ($0007)
WRITE DDRD ($0007) INTERNAL DATA BUS RESET WRITE PTD ($0003) PTDx VDD PTDx DDRDx
PTDPUEx INTERNAL PULLUP DEVICE
Freescale Semiconductor, Inc...
READ PTD ($0003)
Figure 16-15. Port D I/O Circuit When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-5 summarizes the operation of the port D pins. Table 16-5. Port D Pin Functions
Accesses to DDRD PTDPUE Bit 1 0 X DDRD Bit 0 0 1 PTD Bit X(1) X X I/O Pin Mode Read/Write Input, VDD(4) Input, Hi-Z(2) Output DDRD7-DDRD0 DDRD7-DDRD0 DDRD7-DDRD0 Read Pin Pin PTD7-PTD0 Write PTD7-PTD0(3) PTD7-PTD0(3) PTD7-PTD0 Accesses to PTD
Notes: 1. X = Don't care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input. 4. I/O pin pulled up to VDD by internal pullup device.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 229
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
16.6.3 Port D Input Pullup Enable Register The port D input pullup enable register (PTDPUE) contains a software configurable pullup device for each of the eight port D pins. Each bit is individually configurable and requires that the data direction register, DDRD, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRD is configured for output mode.
Address: $000F Bit 7 Read: PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0 Write: Reset: 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 16-16. Port D Input Pullup Enable Register (PTDPUE) PTDPUE7-PTDPUE0 -- Port D Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. 1 = Corresponding port D pin configured to have internal pullup 0 = Corresponding port D pin has internal pullup disconnected
16.7 Port E
Port E is a 2-bit special-function port that shares two of its pins with the serial communications interface (SCI) module.
Technical Data 230
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port E
16.7.1 Port E Data Register The port E data register contains a data latch for each of the two port E pins.
Address: $0008 Bit 7 Read: Write: 0 6 0 5 0 4 0 3 0 2 0 PTE1 PTE0 1 Bit 0
Freescale Semiconductor, Inc...
Reset: Alternate Function: = Unimplemented
Unaffected by reset RxD TxD
Figure 16-17. Port E Data Register (PTE) PTE1 and PTE0 -- Port E Data Bits PTE1 and PTE0 are read/write, software programmable bits. Data direction of each port E pin is under the control of the corresponding bit in data direction register E.
NOTE:
Data direction register E (DDRE) does not affect the data direction of port E pins that are being used by the SCI module. However, the DDRE bits always determine whether reading port E returns the states of the latches or the states of the pins. See Table 16-6. RxD -- SCI Receive Data Input The PTE1/RxD pin is the receive data input for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE1/RxD pin is available for general-purpose I/O. See Section 18. Serial Communications Interface Module (SCI). TxD -- SCI Transmit Data Output The PTE0/TxD pin is the transmit data output for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE0/TxD pin is available for general-purpose I/O. See Section 18. Serial Communications Interface Module (SCI).
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 231
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
16.7.2 Data Direction Register E Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer.
Address: $000C Bit 7 6 0 5 0 4 0 3 0 2 0 DDRE1 Write: Reset: 0 0 0 0 0 0 0 0 DDRE0 1 Bit 0
Freescale Semiconductor, Inc...
Read:
0
= Unimplemented
Figure 16-18. Data Direction Register E (DDRE) DDRE1 and DDRE0 -- Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE1 and DDRE0, configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input
NOTE:
Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 16-19 shows the port E I/O logic.
Technical Data 232
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port E
READ DDRE ($000C)
INTERNAL DATA BUS
WRITE DDRE ($000C) RESET WRITE PTE ($0008) PTEx PTEx DDREx
READ PTE ($0008)
Freescale Semiconductor, Inc...
Figure 16-19. Port E I/O Circuit When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-6 summarizes the operation of the port E pins. Table 16-6. Port E Pin Functions
Accesses to DDRE DDRE Bit 0 1 PTE Bit X(1) X I/O Pin Mode Read/Write Input, Hi-Z(2) Output DDRE1-DDRE0 DDRE1-DDRE0 Read Pin PTE1-PTE0 Write PTE1-PTE0(3) PTE1-PTE0 Accesses to PTE
Notes: 1. X = Don't care 2. Hi-Z = High impedance 3. Writing affects data register, but does not affect input.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 233
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Freescale Semiconductor, Inc...
Technical Data 234
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 17. Random-Access Memory (RAM)
17.1 Contents
17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Freescale Semiconductor, Inc...
17.3
17.2 Introduction
This section describes the 512 bytes of RAM (random-access memory).
17.3 Functional Description
Addresses $0040 through $023F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM locations. Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.
NOTE:
For M6805 compatibility, the H register is not stacked.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Random-Access Memory (RAM) For More Information On This Product, Go to: www.freescale.com
Technical Data 235
Freescale Semiconductor, Inc.
Random-Access Memory (RAM)
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.
Freescale Semiconductor, Inc...
Technical Data 236
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Random-Access Memory (RAM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 18. Serial Communications Interface Module (SCI)
18.1 Contents
18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Freescale Semiconductor, Inc...
18.3 18.4
18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 18.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 18.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 18.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 18.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 245 18.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 18.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 18.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 247 18.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 247 18.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 18.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 18.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 18.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 18.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 18.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 18.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 18.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 18.5.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . 258
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 18.8.1 PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 258
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 237
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
18.8.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 258
18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 18.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 18.9.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 18.9.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 18.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 18.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .274
Freescale Semiconductor, Inc...
18.2 Introduction
This section describes the serial communications interface (SCI) module, which allows high-speed asynchronous communications with peripheral devices and other MCUs.
NOTE:
References to DMA (direct-memory access) and associated functions are only valid if the MCU has a DMA module. This MCU does not have the DMA function. Any DMA-related register bits should be left in their reset state for normal MCU operation.
18.3 Features
Features of the SCI module include: * * * * * * * Full-duplex operation Standard mark/space non-return-to-zero (NRZ) format 32 programmable baud rates Programmable 8-bit or 9-bit character length Separately enabled transmitter and receiver Separate receiver and transmitter CPU interrupt requests Programmable transmitter output polarity
Technical Data 238
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Features
*
Two receiver wakeup methods: - Idle line wakeup - Address mark wakeup
*
Interrupt-driven operation with eight interrupt flags: - Transmitter empty - Transmission complete - Receiver full
Freescale Semiconductor, Inc...
- Idle receiver input - Receiver overrun - Noise error - Framing error - Parity error * * * * Receiver framing error detection Hardware parity checking 1/16 bit-time noise detection Configuration register bit, SCIBDSRC, to allow selection of baud rate clock source
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 239
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) 18.4 Pin Name Conventions
The generic names of the SCI I/O pins are: * * RxD (receive data) TxD (transmit data)
Freescale Semiconductor, Inc...
SCI I/O (input/output) lines are implemented by sharing parallel I/O port pins. The full name of an SCI input or output reflects the name of the shared port pin. Table 18-1 shows the full names and the generic names of the SCI I/O pins. The generic pin names appear in the text of this section. Table 18-1. Pin Name Conventions
Generic Pin Names: Full Pin Names: RxD PTE1/RxD TxD PTE0/TxD
18.5 Functional Description
Figure 18-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC, of the CONFIG2 register ($001E). Source selection values are shown in Figure 18-1.
Technical Data 240
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
INTERNAL BUS
SCI DATA REGISTER TRANSMITTER INTERRUPT CONTROL RECEIVER INTERRUPT CONTROL DMA INTERRUPT CONTROL ERROR INTERRUPT CONTROL
SCI DATA REGISTER TRANSMIT SHIFT REGISTER
PTE1/RxD
RECEIVE SHIFT REGISTER
PTE0/TxD
TXINV SCTIE
Freescale Semiconductor, Inc...
TCIE SCRIE ILIE TE RE RWU SBK SCTE TC SCRF IDLE OR NF FE PE LOOPS LOOPS WAKEUP CONTROL SCIBDSRC FROM CONFIG2 RECEIVE CONTROL FLAG CONTROL M WAKE ILTY
CGMXCLK BUS CLOCK
R8 T8
DMARE DMATE
ORIE NEIE FEIE PEIE
ENSCI TRANSMIT CONTROL
ENSCI
BKF RPF
A SL X B
/4
PRESCALER
BAUD DIVIDER
PEN PTY DATA SELECTION CONTROL
SL = 0 => X = A SL = 1 => X = B
/16
Figure 18-1. SCI Module Block Diagram
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 241
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
Addr.
Register Name Read:
Bit 7
6 ENSCI 0 TCIE 0 T8
5 TXINV 0 SCRIE 0 DMARE 0 SCRF
4 M 0 ILIE 0 DMATE 0 IDLE
3 WAKE 0 TE 0 ORIE 0 OR
2 ILTY 0 RE 0 NEIE 0 NF
1 PEN 0 RWU 0 FEIE 0 FE
Bit 0 PTY 0 SBK 0 PEIE 0 PE
$0013
LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: SCI Control Register 2 Write: (SCC2) Reset: Read: SCI Control Register 3 Write: (SCC3) Reset: Read: SCI Status Register 1 Write: (SCS1) Reset: Read: SCI Status Register 2 Write: (SCS2) Reset: Read: SCI Data Register Write: (SCDR) Reset: Read: SCI Baud Rate Register Write: (SCBR) Reset: SCTIE 0 R8
$0014
Freescale Semiconductor, Inc...
$0015
U SCTE
U TC
$0016
1
1
0
0
0
0
0 BKF
0 RPF
$0017
0 R7 T7
0 R6 T6
0 R5 T5
0 R4 T4
0 R3 T3
0 R2 T2
0 R1 T1
0 R0 T0
$0018
Unaffected by reset SCP1 0 0 0 SCP0 0 R = Reserved R 0 SCR2 0 U = Unaffected SCR1 0 SCR0 0
$0019
= Unimplemented
Figure 18-2. SCI I/O Register Summary
Technical Data 242
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
18.5.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 18-3.
8-BIT DATA FORMAT BIT M IN SCC1 CLEAR START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6
PARITY BIT BIT 7 STOP BIT
NEXT START BIT
Freescale Semiconductor, Inc...
9-BIT DATA FORMAT BIT M IN SCC1 SET START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7
PARITY BIT BIT 8 STOP BIT
NEXT START BIT
Figure 18-3. SCI Data Formats
18.5.2 Transmitter Figure 18-4 shows the structure of the SCI transmitter. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC. Source selection values are shown in Figure 18-4.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 243
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
SCIBDSRC FROM CONFIG2 CGMXCLK A SL X B BUS CLOCK SL = 0 => X = A SL = 1 => X = B
INTERNAL BUS
/4
PRESCALER
BAUD DIVIDER
/ 16
SCI DATA REGISTER
Freescale Semiconductor, Inc...
SCP0 SCR1 SCR2 SCR0 TRANSMITTER CPU INTERRUPT REQUEST TRANSMITTER DMA SERVICE REQUEST TXINV
H
8 MSB
7
6
5
4
3
2
1
0
START L
SCP1 STOP
11-BIT TRANSMIT SHIFT REGISTER
PTE0/TxD
M SHIFT ENABLE PEN PTY PARITY GENERATION LOAD FROM SCDR
PREAMBLE ALL 1s
T8 DMATE DMATE SCTIE SCTE DMATE SCTE SCTIE TC TCIE
TRANSMITTER CONTROL LOGIC
SCTE
LOOPS SCTIE TC TCIE ENSCI TE
Figure 18-4. SCI Transmitter
Technical Data 244
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
BREAK ALL 0s SBK
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
18.5.2.1 Character Length
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8).
18.5.2.2 Character Transmission
Freescale Semiconductor, Inc...
During an SCI transmission, the transmit shift register shifts a character out to the PTE0/TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an SCI transmission: 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR. 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position. The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the PTE0/TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port E pins.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 245
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
18.5.2.3 Break Characters
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: * * * * * * Sets the framing error bit (FE) in SCS1 Sets the SCI receiver full bit (SCRF) in SCS1 Clears the SCI data register (SCDR) Clears the R8 bit in SCC3 Sets the break flag bit (BKF) in SCS2 May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits
Freescale Semiconductor, Inc...
18.5.2.4 Idle Characters
An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the PTE0/TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted.
Technical Data 246
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
NOTE:
When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. Toggle the TE bit for a queued idle character when the SCTE bit becomes set and just before writing the next byte to the SCDR.
18.5.2.5 Inversion of Transmitted Output
Freescale Semiconductor, Inc...
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. (See 18.9.1 SCI Control Register 1.)
18.5.2.6 Transmitter Interrupts
These conditions can generate CPU interrupt requests from the SCI transmitter: * SCI transmitter empty (SCTE) -- The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. Transmission complete (TC) -- The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests.
*
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 247
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
18.5.3 Receiver Figure 18-5 shows the structure of the SCI receiver.
18.5.3.1 Character Length
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).
Freescale Semiconductor, Inc...
18.5.3.2 Character Reception
During an SCI reception, the receive shift register shifts characters in from the PTE1/RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.
Technical Data 248
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
INTERNAL BUS
SCIBDSRC FROM CONFIG2
SCR1 SCP1 SCP0 SCR2 SCR0 START 0 L RWU PRESCALER BAUD DIVIDER SCI DATA REGISTER
STOP
CGMXCLK BUS CLOCK
A SL X B SL = 0 => X = A SL = 1 => X = B
/4
/ 16
DATA RECOVERY
11-BIT RECEIVE SHIFT REGISTER 8 7 6 5 4 3 2 1
PTE1/RxD
H
Freescale Semiconductor, Inc...
ALL 1s
BKF RPF ERROR CPU INTERRUPT REQUEST DMA SERVICE REQUEST
ALL 0s MSB
CPU INTERRUPT REQUEST
M WAKE ILTY PEN PTY WAKEUP LOGIC PARITY CHECKING IDLE ILIE DMARE SCRF SCRIE DMARE SCRF SCRIE DMARE OR ORIE NF NEIE FE FEIE PE PEIE
SCRF IDLE
R8
ILIE
SCRIE
DMARE OR ORIE NF NEIE FE FEIE PE PEIE
Figure 18-5. SCI Receiver Block Diagram
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 249
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
18.5.3.3 Data Sampling
The receiver samples the PTE1/RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see Figure 18-6): * * After every start bit After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0)
Freescale Semiconductor, Inc...
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.
START BIT PTE1/RxD
LSB
SAMPLES
START BIT QUALIFICATION
START BIT VERIFICATION
DATA SAMPLING
RT CLOCK RT10 RT11 RT12 RT13 RT14 RT15 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT1 RT2 RT3 RT4 RT CLOCK STATE RT CLOCK RESET RT16
Figure 18-6. Receiver Data Sampling
Technical Data 250
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 18-2 summarizes the results of the start bit verification samples. Table 18-2. Start Bit Verification
RT3, RT5, and RT7 Samples 000 001 Start Bit Verification Yes Yes Yes No Yes No No No Noise Flag 0 1 1 0 1 0 0 0
Freescale Semiconductor, Inc...
010 011 100 101 110 111
Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 18-3 summarizes the results of the data bit samples. Table 18-3. Data Bit Recovery
RT8, RT9, and RT10 Samples 000 001 010 011 100 101 110 111 Data Bit Determination 0 0 0 1 0 1 1 1 Noise Flag 0 1 1 1 1 1 1 0
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 251
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
NOTE:
The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 18-4 summarizes the results of the stop bit samples. Table 18-4. Stop Bit Recovery
Freescale Semiconductor, Inc...
RT8, RT9, and RT10 Samples 000 001 010 011 100 101 110 111
Framing Error Flag 1 1 1 0 1 0 0 0
Noise Flag 0 1 1 1 1 1 1 0
18.5.3.4 Framing Errors
If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set.
18.5.3.5 Baud Rate Tolerance
A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate
Technical Data 252
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
tolerance is much more than the degree of misalignment that is likely to occur. As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. Slow Data Tolerance
Freescale Semiconductor, Inc...
Figure 18-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.
MSB
STOP
RT10
RT11
RT12
RT13
RT14
RT15
DATA SAMPLES
Figure 18-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times x 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 18-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times x 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is 154 - 147 x 100 = 4.54% ------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times x 16 RT cycles + 10 RT cycles = 170 RT cycles.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 253
RT16
RT1
RT2
RT3
RT4
RT5
RT6
RT7
RT8
RT9
RECEIVER RT CLOCK
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
With the misaligned character shown in Figure 18-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times x 16 RT cycles + 3 RT cycles = 163 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is 170 - 163 x 100 = 4.12% ------------------------170 Fast Data Tolerance Figure 18-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10.
Freescale Semiconductor, Inc...
STOP
IDLE OR NEXT CHARACTER
RT10
RT11
RT12
RT13
RT14
RT15
DATA SAMPLES
Figure 18-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times x 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 18-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times x 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is * 154 - 160 x 100 = 3.90% ------------------------154
Technical Data 254
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
RT16
RT1
RT2
RT3
RT4
RT5
RT6
RT7
RT8
RT9
RECEIVER RT CLOCK
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Functional Description
For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times x 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 18-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times x 16 RT cycles = 176 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is
Freescale Semiconductor, Inc...
170 - 176 x 100 = 3.53% ------------------------170
18.5.3.6 Receiver Wakeup
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the PTE1/RxD pin can bring the receiver out of the standby state: * Address mark -- An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. Idle input line condition -- When the WAKE bit is clear, an idle character on the PTE1/RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the
*
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 255
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit.
NOTE:
With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately.
18.5.3.7 Receiver Interrupts
Freescale Semiconductor, Inc...
The following sources can generate CPU interrupt requests from the SCI receiver: * SCI receiver full (SCRF) -- The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. Idle input (IDLE) -- The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the PTE1/RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests.
*
18.5.3.8 Error Interrupts
The following receiver error flags in SCS1 can generate CPU interrupt requests: * Receiver overrun (OR) -- The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests. Noise flag (NF) -- The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests.
*
Technical Data 256
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) Low-Power Modes
*
Framing error (FE) -- The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests. Parity error (PE) -- The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests.
*
Freescale Semiconductor, Inc...
18.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 18.6.1 Wait Mode The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. Refer to Section 3. Low-Power Modes for information on exiting wait mode. 18.6.2 Stop Mode The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect SCI register states. SCI module operation resumes after an external interrupt. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. Refer to Section 3. Low-Power Modes for information on exiting stop mode.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 257
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) 18.7 SCI During Break Module Interrupts
The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.
Freescale Semiconductor, Inc...
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
18.8 I/O Signals
Port E shares two of its pins with the SCI module. The two SCI I/O pins are: * * PTE0/TxD -- Transmit data PTE1/RxD -- Receive data
18.8.1 PTE0/TxD (Transmit Data) The PTE0/TxD pin is the serial data output from the SCI transmitter. The SCI shares the PTE0/TxD pin with port E. When the SCI is enabled, the PTE0/TxD pin is an output regardless of the state of the DDRE2 bit in data direction register E (DDRE). 18.8.2 PTE1/RxD (Receive Data) The PTE1/RxD pin is the serial data input to the SCI receiver. The SCI shares the PTE1/RxD pin with port E. When the SCI is enabled, the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit in data direction register E (DDRE).
Technical Data 258 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
18.9 I/O Registers
These I/O registers control and monitor SCI operation: * * * * SCI control register 1 (SCC1) SCI control register 2 (SCC2) SCI control register 3 (SCC3) SCI status register 1 (SCS1) SCI status register 2 (SCS2) SCI data register (SCDR) SCI baud rate register (SCBR)
Freescale Semiconductor, Inc...
* * *
18.9.1 SCI Control Register 1 SCI control register 1: * * * * * * * * Enables loop mode operation Enables the SCI Controls output polarity Controls character length Controls SCI wakeup method Controls idle character detection Enables parity function Controls parity type
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 259
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
Address:
$0013 Bit 7 6 ENSCI 0 5 TXINV 0 4 M 0 3 WAKE 0 2 ILTY 0 1 PEN 0 Bit 0 PTY 0
Read: LOOPS Write: Reset: 0
Figure 18-9. SCI Control Register 1 (SCC1) LOOPS -- Loop Mode Select Bit
Freescale Semiconductor, Inc...
This read/write bit enables loop mode operation. In loop mode the PTE1/RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled ENSCI -- Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = SCI enabled 0 = SCI disabled TXINV -- Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted
NOTE:
Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits.
Technical Data 260
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
M -- Mode (Character Length) Bit This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 18-5.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters WAKE -- Wakeup Condition Bit
Freescale Semiconductor, Inc...
This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition on the PTE1/RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY -- Idle Line Type Bit This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit 0 = Idle character bit count begins after start bit PEN -- Parity Enable Bit This read/write bit enables the SCI parity function. (See Table 18-5.) When enabled, the parity function inserts a parity bit in the most significant bit position. (See Figure 18-3.) Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 261
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
PTY -- Parity Bit This read/write bit determines whether the SCI generates and checks for odd parity or even parity. (See Table 18-5.) Reset clears the PTY bit. 1 = Odd parity 0 = Even parity
NOTE:
Changing the PTY bit in the middle of a transmission or reception can generate a parity error. Table 18-5. Character Format Selection
Control Bits M 0 1 0 0 1 1 PEN and PTY 0X 0X 10 11 10 11 Start Bits 1 1 1 1 1 1 Data Bits 8 9 7 7 8 8 Character Format Parity None None Even Odd Even Odd Stop Bits 1 1 1 1 1 1 Character Length 10 bits 11 bits 10 bits 10 bits 11 bits 11 bits
Freescale Semiconductor, Inc...
18.9.2 SCI Control Register 2 SCI control register 2: * Enables the following CPU interrupt requests: - Enables the SCTE bit to generate transmitter CPU interrupt requests - Enables the TC bit to generate transmitter CPU interrupt requests - Enables the SCRF bit to generate receiver CPU interrupt requests - Enables the IDLE bit to generate receiver CPU interrupt requests
Technical Data 262
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
* * * *
Address:
Enables the transmitter Enables the receiver Enables SCI wakeup Transmits SCI break characters
$0014 Bit 7 6 TCIE 0 5 SCRIE 0 4 ILIE 0 3 TE 0 2 RE 0 1 RWU 0 Bit 0 SBK 0
Freescale Semiconductor, Inc...
Read: SCTIE Write: Reset: 0
Figure 18-10. SCI Control Register 2 (SCC2) SCTIE -- SCI Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset clears the SCTIE bit. 1 = SCTE enabled to generate CPU interrupt 0 = SCTE not enabled to generate CPU interrupt TCIE -- Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit. 1 = TC enabled to generate CPU interrupt requests 0 = TC not enabled to generate CPU interrupt requests SCRIE -- SCI Receive Interrupt Enable Bit This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears the SCRIE bit. 1 = SCRF enabled to generate CPU interrupt 0 = SCRF not enabled to generate CPU interrupt ILIE -- Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit. 1 = IDLE enabled to generate CPU interrupt requests 0 = IDLE not enabled to generate CPU interrupt requests
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 263
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
TE -- Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the PTE0/TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the PTE0/TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. 1 = Transmitter enabled 0 = Transmitter disabled
Freescale Semiconductor, Inc...
NOTE:
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RE -- Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled
NOTE:
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RWU -- Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation
Technical Data 264
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
SBK -- Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted
Freescale Semiconductor, Inc...
NOTE:
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble.
18.9.3 SCI Control Register 3 SCI control register 3: * * Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted Enables these interrupts: - Receiver overrun interrupts - Noise error interrupts - Framing error interrupts *
Address:
Parity error interrupts
$0015 Bit 7 6 T8 5 DMARE 0 4 DMATE 0 3 ORIE 0 U = Unaffected 2 NEIE 0 1 FEIE 0 Bit 0 PEIE 0
Read: Write: Reset:
R8
U
U
= Unimplemented
Figure 18-11. SCI Control Register 3 (SCC3)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 265
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
R8 -- Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. T8 -- Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. DMARE -- DMA Receive Enable Bit
Freescale Semiconductor, Inc...
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) 0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) DMATE -- DMA Transfer Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled 0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled
Technical Data 266
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
ORIE -- Receiver Overrun Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR. 1 = SCI error CPU interrupt requests from OR bit enabled 0 = SCI error CPU interrupt requests from OR bit disabled NEIE -- Receiver Noise Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. 1 = SCI error CPU interrupt requests from NE bit enabled 0 = SCI error CPU interrupt requests from NE bit disabled FEIE -- Receiver Framing Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. 1 = SCI error CPU interrupt requests from FE bit enabled 0 = SCI error CPU interrupt requests from FE bit disabled PEIE -- Receiver Parity Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the parity error bit, PE. (See 18.9.4 SCI Status Register 1.) Reset clears PEIE. 1 = SCI error CPU interrupt requests from PE bit enabled 0 = SCI error CPU interrupt requests from PE bit disabled
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 267
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
18.9.4 SCI Status Register 1 SCI status register 1 (SCS1) contains flags to signal these conditions: * * * * * Transfer of SCDR data to transmit shift register complete Transmission complete Transfer of receive shift register data to SCDR complete Receiver input idle Receiver overrun Noisy data Framing error Parity error
$0016 Bit 7 Read: Write: Reset: 1 1 0 0 0 0 0 0 SCTE 6 TC 5 SCRF 4 IDLE 3 OR 2 NF 1 FE Bit 0 PE
Freescale Semiconductor, Inc...
* * *
Address:
= Unimplemented
Figure 18-12. SCI Status Register 1 (SCS1) SCTE -- SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register
Technical Data 268
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
TC -- Transmission Complete Bit This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF -- SCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR IDLE -- Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active (or idle since the IDLE bit was cleared)
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 269
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
OR -- Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun
Freescale Semiconductor, Inc...
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 18-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after reading the data register. NF -- Receiver Noise Flag Bit This clearable, read-only bit is set when the SCI detects noise on the PTE1/RxD pin. NF generates an SCI error CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected FE -- Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected
Technical Data 270
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
NORMAL FLAG CLEARING SEQUENCE SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 3 BYTE 4 READ SCS1 SCRF = 1 OR = 1 READ SCDR BYTE 3 SCRF = 0 OR = 0
BYTE 1 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1
BYTE 2 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 2
BYTE 3
Freescale Semiconductor, Inc...
DELAYED FLAG CLEARING SEQUENCE SCRF = 1 OR = 1 SCRF = 0 OR = 1 SCRF = 1 SCRF = 1 OR = 1 BYTE 3
BYTE 1
BYTE 2 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1
Figure 18-13. Flag Clearing Sequence
PE -- Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates an SCI error CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 271
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
18.9.5 SCI Status Register 2 SCI status register 2 contains flags to signal the following conditions: * *
Address:
Break character detected Incoming data
$0017 Bit 7 6 5 4 3 2 1 BKF Bit 0 RPF
Freescale Semiconductor, Inc...
Read: Write: Reset: 0 0 0 0 0 0
0
0
= Unimplemented
Figure 18-14. SCI Status Register 2 (SCS2) BKF -- Break Flag Bit This clearable, read-only bit is set when the SCI detects a break character on the PTE1/RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the PTE1/RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF -- Reception in Progress Flag Bit This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress
Technical Data 272 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
18.9.6 SCI Data Register The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register.
Address: $0018 Bit 7 Read: R7 T7 6 R6 T6 5 R5 T5 4 R4 T4 3 R3 T3 2 R2 T2 1 R1 T1 Bit 0 R0 T0
Freescale Semiconductor, Inc...
Write: Reset:
Unaffected by reset
Figure 18-15. SCI Data Register (SCDR) R7/T7-R0/T0 -- Receive/Transmit Data Bits Reading the SCDR accesses the read-only received data bits, R7:R0. Writing to the SCDR writes the data to be transmitted, T7:T0. Reset has no effect on the SCDR.
NOTE:
Do not use read/modify/write instructions on the SCI data register.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 273
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
18.9.7 SCI Baud Rate Register The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter.
Address: $0019 Bit 7 Read: SCP1 Write: SCP0 0 R 0 R SCR2 0 = Reserved SCR1 0 SCR0 0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0
0
0
= Unimplemented
Figure 18-16. SCI Baud Rate Register (SCBR) SCP1 and SCP0 -- SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 18-6. Reset clears SCP1 and SCP0. Table 18-6. SCI Baud Rate Prescaling
SCP1 and SCP0 00 01 10 11 Prescaler Divisor (PD) 1 3 4 13
SCR2-SCR0 -- SCI Baud Rate Select Bits These read/write bits select the SCI baud rate divisor as shown in Table 18-7. Reset clears SCR2-SCR0.
Technical Data 274
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI) I/O Registers
Table 18-7. SCI Baud Rate Selection
SCR2, SCR1, and SCR0 000 001 010 011 100 Baud Rate Divisor (BD) 1 2 4 8 16 32 64 128
Freescale Semiconductor, Inc...
101 110 111
Use this formula to calculate the SCI baud rate: SCI clock source baud rate = -------------------------------------------64 x PD x BD where: SCI clock source = fBUS or CGMXCLK (selected by SCIBDSRC bit in CONFIG2 register) PD = prescaler divisor BD = baud rate divisor Table 18-8 shows the SCI baud rates that can be generated with a 4.9152-MHz bus clock when fBUS is selected as SCI clock source.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 275
Freescale Semiconductor, Inc.
Serial Communications Interface Module (SCI)
Table 18-8. SCI Baud Rate Selection Examples
SCP1 and SCP0 00 00 00 00 00 00 Prescaler Divisor (PD) 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 13 13 13 13 13 13 13 13 SCR2, SCR1, and SCR0 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 Baud Rate Divisor (BD) 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 Baud Rate (fBUS = 4.9152 MHz) 76,800 38,400 19,200 9600 4800 2400 1200 600 25,600 12,800 6400 3200 1600 800 400 200 19,200 9600 4800 2400 1200 600 300 150 5908 2954 1477 739 369 185 92 46
Freescale Semiconductor, Inc...
00 00 01 01 01 01 01 01 01 01 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11
Technical Data 276
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Communications Interface Module (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 19. System Integration Module (SIM)
19.1 Contents
19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Freescale Semiconductor, Inc...
19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 281 19.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 19.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . 281 19.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 282 19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 282 19.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 19.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 284 19.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 19.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 286 19.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 19.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 19.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 287 19.4.2.6 Monitor Mode Entry Module Reset (MODRST) . . . . . . . 287 19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 19.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 287 19.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 288 19.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . .288 19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 19.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 19.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 19.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 19.6.1.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . 292 19.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 19.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 19.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 295 19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
Technical Data 277
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
System Integration Module (SIM)
19.7.1 19.7.2 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 19.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 298 19.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 300 19.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 301
19.2 Introduction
Freescale Semiconductor, Inc...
This section describes the system integration module (SIM). Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 19-1. Table 19-1 is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: * Bus clock generation and control for CPU and peripherals: - Stop/wait/reset/break entry and recovery - Internal clock control * * Master reset control, including power-on reset (POR) and COP timeout Interrupt control: - Acknowledge timing - Arbitration control timing - Vector address generation * * CPU enable/disable timing Modular architecture expandable to 128 interrupt sources
Table 19-1 shows the internal signal names used in this section.
Technical Data 278
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Introduction
MODULE STOP MODULE WAIT STOP/WAIT CONTROL CPU STOP (FROM CPU) CPU WAIT (FROM CPU) SIMOSCEN (TO CGM) SIM COUNTER COP CLOCK
CGMXCLK (FROM CGM) CGMOUT (FROM CGM)
Freescale Semiconductor, Inc...
/2
VDD INTERNAL PULLUP DEVICE RESET PIN LOGIC
CLOCK CONTROL
CLOCK GENERATORS
INTERNAL CLOCKS
POR CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER MASTER RESET CONTROL
LVI (FROM LVI MODULE) ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE)
RESET
INTERRUPT CONTROL AND PRIORITY DECODE
INTERRUPT SOURCES CPU INTERFACE
Figure 19-1. SIM Block Diagram Table 19-1. Signal Name Conventions
Signal Name CGMXCLK CGMVCLK CGMOUT IAB IDB PORRST IRST R/W PLL output PLL-based or OSC1-based clock output from CGM module (Bus clock = CGMOUT divided by two) Internal address bus Internal data bus Signal from the power-on reset module to the SIM Internal reset signal Read/write signal Description Buffered version of OSC1 from clock generator module (CGM)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 279
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Addr.
Register Name
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW
Bit 0 R
Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: Read: SIM Upper Byte Address $FE02 Register Write: (SUBAR) Reset: Read: SIM Break Flag Control Register Write: (SBFCR) Reset:
Note 0
POR
PIN
COP
ILOP
ILAD
MODRST
LVI
0
Freescale Semiconductor, Inc...
1 R
0 R
0 R
0 R
0 R
0 R
0 R
0 R
BCFE 0 IF6 R 0 IF14 R 0 0 R 0
R
R
R
R
R
R
R
$FE03
Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset:
IF5 R 0 IF13 R 0 0 R 0
IF4 R 0 IF12 R 0 0 R 0
IF3 R 0 IF11 R 0 0 R 0
IF2 R 0 IF10 R 0 0 R 0
IF1 R 0 IF9 R 0 0 R 0
0 R 0 IF8 R 0 IF16 R 0
0 R 0 IF7 R 0 IF15 R 0
= Unimplemented
Figure 19-2. SIM I/O Register Summary
Technical Data 280
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) SIM Bus Clock Control and Generation
19.3 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 19-3. This clock can come from either an external oscillator or from the on-chip PLL. (See Section 7. Clock Generator Module (CGMC).)
Freescale Semiconductor, Inc...
OSC2
OSCILLATOR (OSC)
CGMXCLK OSC1
TO TIMTB15A, ADC
SIM OSCSTOPENB FROM CONFIG
SIMOSCEN IT12 TO REST OF CHIP IT23 TO REST OF CHIP
CGMRCLK CGMOUT PHASE-LOCKED LOOP (PLL)
SIM COUNTER
/2
BUS CLOCK GENERATORS
SIMDIV2 MONITOR MODE USER MODE
PTC3
Figure 19-3. CGM Clock Signals
19.3.1 Bus Timing In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four or the PLL output (CGMVCLK) divided by four.
19.3.2 Clock Startup from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com Technical Data 281
Freescale Semiconductor, Inc.
System Integration Module (SIM)
and held in an inactive phase until after the 4096 CGMXCLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout.
19.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 CGMXCLK cycles. (See 19.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
Freescale Semiconductor, Inc...
19.4 Reset and System Initialization
The MCU has these reset sources: * * * * * * Power-on reset module (POR) External reset pin (RST) Computer operating properly module (COP) Low-voltage inhibit module (LVI) Illegal opcode Illegal address
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 19.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 19.8 SIM Registers.)
Technical Data 282
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Reset and System Initialization
19.4.1 External Pin Reset The RST pin circuit includes an internal pullup device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 19-2 for details. Figure 19-4 shows the relative timing. Table 19-2. PIN Bit Set Timing
Freescale Semiconductor, Inc...
Reset Type POR/LVI All others
Number of Cycles Required to Set PIN 4163 (4096 + 64 + 3) 67 (64 + 3)
CGMOUT RST IAB PC VECT H VECT L
Figure 19-4. External Reset Timing
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 283
Freescale Semiconductor, Inc.
System Integration Module (SIM)
19.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles. See Figure 19-5. An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR. (See Figure 19-6.)
NOTE:
Freescale Semiconductor, Inc...
For LVI or POR resets, the SIM cycles through 4096 + 32 CGMXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 19-5.
IRST
RST
RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES
CGMXCLK
IAB
VECTOR HIGH
Figure 19-5. Internal Reset Timing The COP reset is asynchronous to the bus clock.
ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST LVI POR
INTERNAL RESET
Figure 19-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU.
Technical Data 284
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Reset and System Initialization
19.4.2.1 Power-On Reset
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, these events occur:
Freescale Semiconductor, Inc...
* * * * * *
A POR pulse is generated. The internal reset signal is asserted. The SIM enables CGMOUT. Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow stabilization of the oscillator. The RST pin is driven low during the oscillator stabilization time. The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared.
OSC1
PORRST 4096 CYCLES CGMXCLK 32 CYCLES 32 CYCLES
CGMOUT
RST
IRST
IAB
$FFFE
$FFFF
Figure 19-7. POR Recovery
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 285
Freescale Semiconductor, Inc.
System Integration Module (SIM)
19.4.2.2 Computer Operating Properly (COP) Reset
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and bits 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every 213 - 24 CGMXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. The COP module is disabled if the RST pin or the IRQ pin is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VTST on the RST pin disables the COP module.
Freescale Semiconductor, Inc...
19.4.2.3 Illegal Opcode Reset
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources.
19.4.2.4 Illegal Address Reset
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.
Technical Data 286 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) SIM Counter
19.4.2.5 Low-Voltage Inhibit (LVI) Reset
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVITRIPF voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources.
Freescale Semiconductor, Inc...
19.4.2.6 Monitor Mode Entry Module Reset (MODRST)
The monitor mode entry module reset (MODRST) asserts its output to the SIM when monitor mode is entered in the condition where the reset vectors are blank ($FF). (See 15.4.1 Entering Monitor Mode.) When MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all internal reset sources.
19.5 SIM Counter
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 13 bits long and is clocked by the falling edge of CGMXCLK.
19.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to drive the bus clock state machine.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 287
Freescale Semiconductor, Inc.
System Integration Module (SIM)
19.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared.
Freescale Semiconductor, Inc...
19.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 19.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 19.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.)
19.6 Exception Control
Normal, sequential program execution can be changed in three different ways: * Interrupts: - Maskable hardware CPU interrupts - Non-maskable software interrupt instruction (SWI) * * Reset Break interrupts
19.6.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal
Technical Data 288 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Exception Control
processing can resume. Figure 19-8 shows interrupt entry timing. Figure 19-9 shows interrupt recovery timing. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). (See Figure 19-10.)
Freescale Semiconductor, Inc...
MODULE INTERRUPT
I BIT
IAB
DUMMY
SP
SP - 1
SP - 2
SP - 3
SP - 4
VECT H
VECT L
START ADDR
IDB
DUMMY
PC - 1[7:0] PC - 1[15:8]
X
A
CCR
V DATA H
V DATA L
OPCODE
R/W
Figure 19-8. Interrupt Entry Timing
MODULE INTERRUPT
I BIT
IAB
SP - 4
SP - 3
SP - 2
SP - 1
SP
PC
PC + 1
IDB
CCR
A
X
PC - 1 [15:8] PC - 1 [7:0]
OPCODE
OPERAND
R/W
Figure 19-9. Interrupt Recovery Timing
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 289
Freescale Semiconductor, Inc.
System Integration Module (SIM)
FROM RESET
BREAK I BIT SET? INTERRUPT? NO YES
YES
I BIT SET? NO
Freescale Semiconductor, Inc...
IRQ INTERRUPT? NO
YES
AS MANY INTERRUPTS AS EXIST ON CHIP STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR
FETCH NEXT INSTRUCTION
SWI INSTRUCTION? NO RTI INSTRUCTION? NO
YES
YES
UNSTACK CPU REGISTERS
EXECUTE INSTRUCTION
Figure 19-10. Interrupt Processing
Technical Data 290
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Exception Control
19.6.1.1 Hardware Interrupts
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed.
Freescale Semiconductor, Inc...
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 19-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.
CLI LDA #$FF BACKGROUND ROUTINE
INT1
PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI
INT2
PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI
Figure 19-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.
NOTE:
To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.
Technical Data 291
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
System Integration Module (SIM)
19.6.1.2 SWI Instruction
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does not push PC - 1, as a hardware interrupt does.
19.6.1.3 Interrupt Status Registers
Freescale Semiconductor, Inc...
The flags in the interrupt status registers identify maskable interrupt sources. Table 19-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 19-3. Interrupt Sources
Priority Highest Interrupt Source Reset SWI instruction IRQ pin PLL TIM1 channel 0 TIM1 channel 1 TIM1 overflow TIM2 channel 0 TIM2 channel 1 TIM2 overflow SPI receiver full SPI transmitter empty SCI receive error SCI receive SCI transmit Keyboard ADC conversion complete Lowest Timebase module Interrupt Status Register Flag -- -- IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IF10 IF11 IF12 IF13 IF14 IF15 IF16
Technical Data 292
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Exception Control
Interrupt Status Register 1
Address:
$FE04 Bit 7 6 IF5 R 0 = Reserved 5 IF4 R 0 4 IF3 R 0 3 IF2 R 0 2 IF1 R 0 1 0 R 0 Bit 0 0 R 0
Read: Write: Reset:
IF6 R 0 R
Figure 19-12. Interrupt Status Register 1 (INT1)
Freescale Semiconductor, Inc...
IF6-IF1 -- Interrupt Flags 1-6 These flags indicate the presence of interrupt requests from the sources shown in Table 19-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0 and Bit 1 -- Always read 0
Interrupt Status Register 2
Address:
$FE05 Bit 7 6 IF13 R 0 = Reserved 5 IF12 R 0 4 IF11 R 0 3 IF10 R 0 2 IF9 R 0 1 IF8 R 0 Bit 0 IF7 R 0
Read: Write: Reset:
IF14 R 0 R
Figure 19-13. Interrupt Status Register 2 (INT2) IF14-IF7 -- Interrupt Flags 14-7 These flags indicate the presence of interrupt requests from the sources shown in Table 19-3. 1 = Interrupt request present 0 = No interrupt request present
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 293
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Interrupt Status Register 3
Address:
$FE06 Bit 7 6 0 R 0 = Reserved 5 0 R 0 4 0 R 0 3 0 R 0 2 0 R 0 1 IF16 R 0 Bit 0 IF15 R 0
Read: Write: Reset:
0 R 0 R
Figure 19-14. Interrupt Status Register 3 (INT3)
Freescale Semiconductor, Inc...
Bits 7-2 -- Always read 0 IF16-IF15 -- Interrupt Flags 16-15 These flags indicate the presence of an interrupt request from the source shown in Table 19-3. 1 = Interrupt request present 0 = No interrupt request present
19.6.2 Reset All reset sources always have equal and highest priority and cannot be arbitrated.
19.6.3 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 22. Timer Interface Module (TIM).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state.
Technical Data 294
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Low-Power Modes
19.6.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information.
Freescale Semiconductor, Inc...
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism -- for example, a read of one register followed by the read or write of another -- are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.
19.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 19.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 19-15 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com Technical Data 295
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Wait mode also can be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode.
IAB WAIT ADDR WAIT ADDR + 1 SAME SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
Freescale Semiconductor, Inc...
R/W
Note:
Previous data can be operand data or the WAIT opcode, depending on the last instruction.
Figure 19-15. Wait Mode Entry Timing Figure 19-16 and Figure 19-17 show the timing for WAIT recovery.
IAB $6E0B $6E0C $00FF $00FE $00FD $00FC
IDB
$A6
$A6
$A6
$01
$0B
$6E
EXITSTOPWAIT
Note: EXITSTOPWAIT = RST pin, CPU interrupt, or break interrupt
Figure 19-16. Wait Recovery from Interrupt or Break
32 CYCLES IAB $6E0B 32 CYCLES RST VCT H RST VCT L
IDB
$A6
$A6
$A6
RST
CGMXCLK
Figure 19-17. Wait Recovery from Internal Reset
Technical Data 296
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Low-Power Modes
19.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the mask option register (MOR). If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long startup times from stop mode.
Freescale Semiconductor, Inc...
NOTE:
External crystal applications should use the full stop recovery time by clearing the SSREC bit. A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 19-18 shows stop mode entry timing.
NOTE:
To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0.
CPUSTOP
IAB
STOP ADDR
STOP ADDR + 1
SAME
SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W Note : Previous data can be operand data or the STOP opcode, depending on the last instruction.
Figure 19-18. Stop Mode Entry Timing
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 297
Freescale Semiconductor, Inc.
System Integration Module (SIM)
STOP RECOVERY PERIOD CGMXCLK
INT/BREAK
IAB
STOP +1
STOP + 2
STOP + 2
SP
SP - 1
SP - 2
SP - 3
Figure 19-19. Stop Mode Recovery from Interrupt or Break
Freescale Semiconductor, Inc...
19.8 SIM Registers
The SIM has three memory-mapped registers. Table 19-4 shows the mapping of these registers. Table 19-4. SIM Registers
Address $FE00 $FE01 $FE03 Register SBSR SRSR SBFCR Access Mode User User User
19.8.1 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop mode or wait mode.
Address: $FE00 Bit 7 Read: R Write: Reset: R = Reserved R R R R R Note 0 6 5 4 3 2 1 SBSW R Bit 0
Note: Writing a logic 0 clears SBSW.
Figure 19-20. SIM Break Status Register (SBSR)
Technical Data 298
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) SIM Registers
SBSW -- SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt. 0 = Stop mode or wait mode was not exited by break interrupt. SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing 0 to the SBSW bit clears it.
; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE LOBYTE ; EQU EQU 5 6
Freescale Semiconductor, Inc...
If not SBSW, do RTI BRCLR TST BNE DEC DOLO RETURN DEC PULH RTI SBSW,SBSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ; See if wait mode or stop mode was exited by ; break. ;If RETURNLO is not zero, ;then just decrement low byte. ;Else deal with high byte, too. ;Point to WAIT/STOP opcode. ;Restore H register.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 299
Freescale Semiconductor, Inc.
System Integration Module (SIM)
19.8.2 SIM Reset Status Register This register contains six flags that show the source of the last reset provided all previous reset status bits have been cleared. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register.
Address: $FE01 Bit 7 6 PIN 5 COP 4 ILOP 3 ILAD 2 MODRST 1 LVI Bit 0 0
Freescale Semiconductor, Inc...
Read: Write: Reset:
POR
1
0
0
0
0
0
0
0
= Unimplemented
Figure 19-21. SIM Reset Status Register (SRSR) POR -- Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR PIN -- External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP -- Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP -- Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD -- Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR
Technical Data 300
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) SIM Registers
MODRST -- Monitor Mode Entry Module Reset Bit 1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after POR while IRQ = VDD 0 = POR or read of SRSR LVI -- Low-Voltage Inhibit Reset Bit 1 = Last reset caused by the LVI circuit 0 = POR or read of SRSR
Freescale Semiconductor, Inc...
19.8.3 SIM Break Flag Control Register The SIM break control register contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: Reset: 0 R = Reserved R R R R R R R 6 5 4 3 2 1 Bit 0
Figure 19-22. SIM Break Flag Control Register (SBFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 301
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Freescale Semiconductor, Inc...
Technical Data 302
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 20. Serial Peripheral Interface Module (SPI)
20.1 Contents
20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Pin Name Conventions and I/O Register Addresses . . . . . . . 305
Freescale Semiconductor, Inc...
20.3 20.4
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 20.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 20.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 20.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . 309 20.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 310 20.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 312 20.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 313 20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 315
20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 20.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 20.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323 20.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .324 20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 20.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 325 20.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 325
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com Technical Data 303
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
20.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .326 20.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 20.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 20.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 20.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 330 20.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Freescale Semiconductor, Inc...
20.2 Introduction
This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous, serial communications with peripheral devices.
20.3 Features
Features of the SPI module include: * * * * * * * Full-duplex operation Master and slave modes Double-buffered operation with separate transmit and receive registers Four master mode frequencies (maximum = bus frequency / 2) Maximum slave mode frequency = bus frequency Serial clock with programmable polarity and phase Two separately enabled interrupts: - SPRF (SPI receiver full) - SPTE (SPI transmitter empty) * * * * * Mode fault error flag with CPU interrupt capability Overflow error flag with CPU interrupt capability Programmable wired-OR mode I2C (inter-integrated circuit) compatibility I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Technical Data 304
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Pin Name Conventions
20.4 Pin Name Conventions
The text that follows describes the SPI. The SPI I/O pin names are SS (slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI (master out slave in), and MISO (master in/slave out). The SPI shares four I/O pins with four parallel I/O ports. The full names of the SPI I/O pins are shown in Table 20-1. The generic pin names appear in the text that follows.
Freescale Semiconductor, Inc...
Table 20-1. Pin Name Conventions
SPI Generic Pin Names: MISO MOSI SS SPSCK PTD3/SPSCK CGND VSS
Full SPI Pin Names: SPI PTD1/MISO PTD2/MOSI PTD0/SS
20.5 Functional Description
Figure 20-1 summarizes the SPI I/O registers and Figure 20-2 shows the structure of the SPI module.
Addr. Register Name Read: SPI Control Register Write: (SPCR) Reset: Read: SPI Status and Control Register Write: (SPSCR) Reset: Read: SPI Data Register Write: (SPDR) Reset: Bit 7 SPRIE 0 SPRF ERRIE 0 R7 T7 0 R6 T6 0 R5 T5 0 R4 T4 1 R3 T3 0 6 DMAS SPMSTR 1 OVRF CPOL 0 MODF CPHA 1 SPTE MODFEN 0 R2 T2 SPR1 0 R1 T1 SPR0 0 R0 T0 SPWOM 0 SPE 0 SPTIE 0 5 4 3 2 1 Bit 0
$0010
$0011
$0012
Unaffected by reset = Unimplemented
Figure 20-1. SPI I/O Register Summary
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 305
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
INTERNAL BUS
TRANSMIT DATA REGISTER CGMOUT / 2 FROM SIM 7 6
SHIFT REGISTER 5 4 3 2 1 0 MISO
/2 /8 CLOCK DIVIDER / 32
RECEIVE DATA REGISTER PIN CONTROL LOGIC CLOCK SELECT
MOSI
Freescale Semiconductor, Inc...
/ 128
SPMSTR
SPE
SPSCK CLOCK LOGIC M S SS
SPR1
SPR0
SPMSTR
CPHA
CPOL
RESERVED TRANSMITTER CPU INTERRUPT REQUEST RESERVED RECEIVER/ERROR CPU INTERRUPT REQUEST SPI CONTROL
MODFEN ERRIE SPTIE SPRIE DMAS SPE SPRF SPTE OVRF MODF
SPWOM
Figure 20-2. SPI Module Block Diagram The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interruptdriven. If a port bit is configured for input, then an internal pullup device may be enabled for that port bit. (See 16.5.3 Port C Input Pullup Enable Register.)
Technical Data 306 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Functional Description
The following paragraphs describe the operation of the SPI module.
20.5.1 Master Mode The SPI operates in master mode when the SPI master bit, SPMSTR, is set.
NOTE:
Freescale Semiconductor, Inc...
Configure the SPI modules as master or slave before enabling them. Enable the master SPI before enabling the slave SPI. Disable the slave SPI before disabling the master SPI. (See 20.14.1 SPI Control Register.) Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI pin under the control of the serial clock. (See Figure 20-3.)
MASTER MCU SLAVE MCU
SHIFT REGISTER
MISO MOSI SPSCK
MISO MOSI SPSCK SS
SHIFT REGISTER
BAUD RATE GENERATOR
SS
VDD
Figure 20-3. Full-Duplex Master-Slave Connections
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 307
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register. (See 20.14.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the master also controls the shift register of the slave peripheral. As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master's MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that SPRF becomes set, the byte from the slave transfers to the receive data register. In normal operation, SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register. Writing to the SPI data register clears the SPTE bit.
Freescale Semiconductor, Inc...
20.5.2 Slave Mode The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the SPSCK pin is the input for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI must be at logic 0. SS must remain low until the transmission is complete. (See 20.8.2 Mode Fault Error.) In a slave SPI module, data enters the shift register under the control of the serial clock from the master SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register, and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data register before another full byte enters the shift register. The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.
Technical Data 308
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Transmission Formats
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its transmit data register. The slave must write to its transmit data register at least one bus cycle before the master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of the transmission.
Freescale Semiconductor, Inc...
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is clear, the falling edge of SS starts a transmission. (See 20.6 Transmission Formats.)
NOTE:
SPSCK must be in the proper idle state before the slave is enabled to prevent SPSCK from appearing as a clock edge.
20.6 Transmission Formats
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate multiplemaster bus contention.
20.6.1 Clock Phase and Polarity Controls Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high or low clock and has no significant effect on the transmission format.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 309
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transmissions to allow a master device to communicate with peripheral slaves having different requirements.
NOTE:
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing the SPI enable bit (SPE).
Freescale Semiconductor, Inc...
20.6.2 Transmission Format When CPHA = 0 Figure 20-4 shows an SPI transmission in which CPHA is logic 0. The figure should not be used as a replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 20.8.2 Mode Fault Error.) When CPHA = 0, the first SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave's SS pin must be toggled back to high and then low again between each byte transmitted as shown in Figure 20-5.
Technical Data 310
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Transmission Formats
SPSCK CYCLE # FOR REFERENCE SPSCK; CPOL = 0 SPSCK; CPOL =1 MOSI FROM MASTER MISO FROM SLAVE SS; TO SLAVE CAPTURE STROBE
1
2
3
4
5
6
7
8
MSB MSB
BIT 6 BIT 6
BIT 5 BIT 5
BIT 4 BIT 4
BIT 3 BIT 3
BIT 2 BIT 2
BIT 1 BIT 1
LSB LSB
Freescale Semiconductor, Inc...
Figure 20-4. Transmission Format (CPHA = 0)
MISO/MOSI MASTER SS SLAVE SS CPHA = 0 SLAVE SS CPHA = 1
BYTE 1
BYTE 2
BYTE 3
Figure 20-5. CPHA/SS Timing When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift register after the current transmission.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 311
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
20.6.3 Transmission Format When CPHA = 1 Figure 20-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 20.8.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can remain low between transmissions. This format may be preferable in systems having only one master and only one slave driving the MISO data line.
Freescale Semiconductor, Inc...
SPSCK CYCLE # FOR REFERENCE SPSCK; CPOL = 0 SPSCK; CPOL =1 MOSI FROM MASTER MISO FROM SLAVE SS; TO SLAVE CAPTURE STROBE
1
2
3
4
5
6
7
8
MSB MSB
BIT 6 BIT 6
BIT 5 BIT 5
BIT 4 BIT 4
BIT 3 BIT 3
BIT 2 BIT 2
BIT 1 BIT 1
LSB LSB
Figure 20-6. Transmission Format (CPHA = 1)
Technical Data 312
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Transmission Formats
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the shift register after the current transmission.
Freescale Semiconductor, Inc...
20.6.4 Transmission Initiation Latency When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and the start of the SPI transmission. (See Figure 20-7.) The internal SPI clock in the master is a free-running derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and SPMSTR bits are set. SPSCK edges occur halfway through the low time of the internal MCU clock. Since the SPI clock is free-running, it is uncertain where the write to the SPDR occurs relative to the slower SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 20-7. This delay is no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 313
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
WRITE TO SPDR BUS CLOCK MOSI SPSCK CPHA = 1 SPSCK CPHA = 0 SPSCK CYCLE NUMBER
INITIATION DELAY
MSB
BIT 6
BIT 5
Freescale Semiconductor, Inc...
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN
WRITE TO SPDR BUS CLOCK EARLIEST LATEST WRITE TO SPDR BUS CLOCK SPSCK = INTERNAL CLOCK / 8; 8 POSSIBLE START POINTS SPSCK = INTERNAL CLOCK / 2; 2 POSSIBLE START POINTS
EARLIEST WRITE TO SPDR BUS CLOCK
LATEST
EARLIEST WRITE TO SPDR BUS CLOCK
SPSCK = INTERNAL CLOCK / 32; 32 POSSIBLE START POINTS
LATEST
EARLIEST
SPSCK = INTERNAL CLOCK / 128; 128 POSSIBLE START POINTS
LATEST
Figure 20-7. Transmission Start Delay (Master)
Technical Data 314
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Queuing Transmission Data
20.7 Queuing Transmission Data
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI configured as a master, a queued data byte is transmitted immediately after the previous transmission has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 20-8 shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL = 1:0).
Freescale Semiconductor, Inc...
WRITE TO SPDR SPTE SPSCK CPHA:CPOL = 1:0 MOSI
1 2
3 5
8 10
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT 654321 654321 654 BYTE 1 BYTE 2 BYTE 3 4 6 7 7 CPU READS SPDR, CLEARING SPRF BIT. CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE 3 AND CLEARING SPTE BIT. 9 SECOND INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. 10 BYTE 3 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 11 CPU READS SPSCR WITH SPRF BIT SET. 12 CPU READS SPDR, CLEARING SPRF BIT. 8 9 11 12
SPRF READ SPSCR READ SPDR 1 CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT. 2 BYTE 1 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 3 CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2 AND CLEARING SPTE BIT. 4 FIRST INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. 5 BYTE 2 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 6 CPU READS SPSCR WITH SPRF BIT SET.
Figure 20-8. SPRF/SPTE CPU Interrupt Timing The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes between transmissions as in a system with a single data buffer. Also, if no new data is written to the data buffer, the last value contained in the shift register is the next data word to be transmitted.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 315
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur until the transmission is completed. This implies that a back-to-back write to the transmit data register is not possible. The SPTE indicates when the next write can occur.
Freescale Semiconductor, Inc...
20.8 Error Conditions
The following flags signal SPI error conditions: * Overflow (OVRF) -- Failing to read the SPI data register before the next full byte enters the shift register sets the OVRF bit. The new byte does not transfer to the receive data register, and the unread byte still can be read. OVRF is in the SPI status and control register. Mode fault error (MODF) -- The MODF bit indicates that the voltage on the slave select pin (SS) is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.
*
20.8.1 Overflow Error The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs in the middle of SPSCK cycle 7. (See Figure 20-4 and Figure 20-6.) If an overflow occurs, all data received after the overflow and before the OVRF bit is cleared does not transfer to the receive data register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive data register before the overflow occurred can still be read. Therefore, an overflow error always indicates the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading the SPI data register. OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF
Technical Data 316
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Error Conditions
interrupts share the same CPU interrupt vector. (See Figure 20-11.) It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition. Figure 20-9 shows how it is possible to miss an overflow. The first part of Figure 20-9 shows how it is possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR are read.
Freescale Semiconductor, Inc...
BYTE 1 1
BYTE 2 4
BYTE 3 6
BYTE 4 8
SPRF
OVRF READ SPSCR READ SPDR 1 2 3 4 2 5
3 BYTE 1 SETS SPRF BIT. CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. BYTE 2 SETS SPRF BIT. 5 6 7 8
7 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST. CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT, BUT NOT OVRF BIT. BYTE 4 FAILS TO SET SPRF BIT BECAUSE OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.
Figure 20-9. Missed Read of Overflow Condition In this case, an overflow can be missed easily. Since no more SPRF interrupts can be generated until this OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future transmissions can set the SPRF bit. Figure 20-10 illustrates this process. Generally, to avoid this second SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com Technical Data 317
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
BYTE 1 SPI RECEIVE COMPLETE SPRF OVRF READ SPSCR READ SPDR 1 2 3 4 1
BYTE 2 5
BYTE 3 7
BYTE 4 11
6 8 8 9
9 10
12 13
14
BYTE 1 SETS SPRF BIT. CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. CPU READS SPSCR AGAIN TO CHECK OVRF BIT. BYTE 2 SETS SPRF BIT. CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
Freescale Semiconductor, Inc...
2 3 4 5 6 7
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT. CPU READS SPSCR AGAIN TO CHECK OVRF BIT.
10 CPU READS BYTE 2 SPDR, CLEARING OVRF BIT. 11 BYTE 4 SETS SPRF BIT. 12 CPU READS SPSCR. 13 CPU READS BYTE 4 IN SPDR, CLEARING SPRF BIT. 14 CPU READS SPSCR AGAIN TO CHECK OVRF BIT.
Figure 20-10. Clearing SPRF When OVRF Interrupt Is Not Enabled
20.8.2 Mode Fault Error Setting the SPMSTR bit selects master mode and configures the SPSCK and MOSI pins as outputs and the MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI pins as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state of the slave select pin, SS, is inconsistent with the mode selected by SPMSTR. To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if: * * The SS pin of a slave SPI goes high during a transmission The SS pin of a master SPI goes low at any time
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is cleared.
Technical Data 318
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Error Conditions
MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 20-11.) It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master SPI causes the following events to occur:
Freescale Semiconductor, Inc...
* * * * *
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request. The SPE bit is cleared. The SPTE bit is set. The SPI state counter is cleared. The data direction register of the shared I/O port regains control of port drivers.
NOTE:
To prevent bus contention with another master SPI after a mode fault error, clear all SPI bits of the data direction register of the shared I/O port before enabling the SPI. When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission. When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK goes back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins when the SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK returns to its idle level following the shift of the last data bit. (See 20.6 Transmission Formats.)
NOTE:
Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit has no function when SPE = 0. Reading SPMSTR when MODF = 1 shows the difference between a MODF occurring when the SPI is a master and when it is a slave. When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and later unselected (SS is at logic 1) even if no SPSCK is sent to that
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 319
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
slave. This happens because SS at logic 0 indicates the start of the transmission (MISO driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave can be selected and then later unselected with no transmission occurring. Therefore, MODF does not occur since a transmission was never begun. In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort the SPI transmission by clearing the SPE bit of the slave.
Freescale Semiconductor, Inc...
NOTE:
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high impedance state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission. To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared.
20.9 Interrupts
Four SPI status flags can be enabled to generate CPU interrupt requests. Table 20-2. SPI Interrupts
Flag SPTE Transmitter empty SPRF Receiver full OVRF Overflow MODF Mode fault Request SPI transmitter CPU interrupt request (DMAS = 0, SPTIE = 1, SPE = 1) SPI receiver CPU interrupt request (DMAS = 0, SPRIE = 1) SPI receiver/error interrupt request (ERRIE = 1) SPI receiver/error interrupt request (ERRIE = 1)
Technical Data 320
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Interrupts
Reading the SPI status and control register with SPRF set and then reading the receive data register clears SPRF. The clearing mechanism for the SPTE flag is always just a write to the transmit data register. The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU interrupt requests, provided that the SPI is enabled (SPE = 1). The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt requests, regardless of the state of the SPE bit. (See Figure 20-11.) The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error CPU interrupt request. The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests.
Freescale Semiconductor, Inc...
NOT AVAILABLE
SPTE
SPTIE
SPE SPI TRANSMITTER CPU INTERRUPT REQUEST
DMAS
NOT AVAILABLE
SPRIE
SPRF
SPI RECEIVER/ERROR ERRIE MODF OVRF CPU INTERRUPT REQUEST
Figure 20-11. SPI Interrupt Request Generation
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 321
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
The following sources in the SPI status and control register can generate CPU interrupt requests: * SPI receiver full bit (SPRF) -- The SPRF bit becomes set every time a byte transfers from the shift register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set, SPRF generates an SPI receiver/error CPU interrupt request. SPI transmitter empty (SPTE) -- The SPTE bit becomes set every time a byte transfers from the transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set, SPTE generates an SPTE CPU interrupt request.
*
Freescale Semiconductor, Inc...
20.10 Resetting the SPI
Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the following occurs: * * * * * The SPTE flag is set. Any transmission currently in progress is aborted. The shift register is cleared. The SPI state counter is cleared, making it ready for a new complete transmission. All the SPI port logic is defaulted back to being general-purpose I/O.
These items are reset only by a system reset: * * * All control bits in the SPCR register All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0) The status flags SPRF, OVRF, and MODF
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without having to set all control bits again when SPE is set back high for the next transmission.
Technical Data 322
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) Low-Power Modes
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.
20.11 Low-Power Modes
Freescale Semiconductor, Inc...
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
20.11.1 Wait Mode The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can bring the MCU out of wait mode. If SPI module functions are not required during wait mode, reduce power consumption by disabling the SPI module before executing the WAIT instruction. To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate CPU interrupt requests by setting the error interrupt enable bit (ERRIE). (See 20.9 Interrupts.)
20.11.2 Stop Mode The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is aborted, and the SPI is reset.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 323
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) 20.12 SPI During Break Interrupts
The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See Section 19. System Integration Module (SIM).) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the transmit data register in break mode does not initiate a transmission nor is this data transferred into the shift register. Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect.
Freescale Semiconductor, Inc...
20.13 I/O Signals
The SPI module has five I/O pins and shares four of them with a parallel I/O port. They are: * * * * * MISO -- Data received MOSI -- Data transmitted SPSCK -- Serial clock SS -- Slave select CGND -- Clock ground (internally connected to VSS)
Technical Data 324
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) I/O Signals
The SPI has limited inter-integrated circuit (I2C) capability (requiring software support) as a master in a single-master environment. To communicate with I2C peripherals, MOSI becomes an open-drain output when the SPWOM bit in the SPI control register is set. In I2C communication, the MOSI and MISO pins are connected to a bidirectional pin from the I2C peripheral and through a pullup resistor to VDD.
20.13.1 MISO (Master In/Slave Out)
Freescale Semiconductor, Inc...
MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI simultaneously receives data on its MISO pin and transmits data from its MOSI pin. Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is configured as a slave when its SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multipleslave system, a logic 1 on the SS pin puts the MISO pin in a highimpedance state. When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction register of the shared I/O port.
20.13.2 MOSI (Master Out/Slave In) MOSI is one of the two SPI module pins that transmits serial data. In fullduplex operation, the MOSI pin of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI simultaneously transmits data from its MOSI pin and receives data on its MISO pin. When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction register of the shared I/O port.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 325
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
20.13.3 SPSCK (Serial Clock) The serial clock synchronizes data transmission between master and slave devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles. When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data direction register of the shared I/O port.
Freescale Semiconductor, Inc...
20.13.4 SS (Slave Select) The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a slave, the SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission. (See 20.6 Transmission Formats.) Since it is used to indicate the start of a transmission, the SS must be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low between transmissions for the CPHA = 1 format. See Figure 20-12.
MISO/MOSI MASTER SS SLAVE SS CPHA = 0 SLAVE SS CPHA = 1
BYTE 1
BYTE 2
BYTE 3
Figure 20-12. CPHA/SS Timing When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can still prevent the state of the SS from creating a MODF error. (See 20.14.2 SPI Status and Control Register.)
NOTE:
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a highimpedance state. The slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Technical Data 326
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) I/O Signals
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to prevent multiple masters from driving MOSI and SPSCK. (See 20.8.2 Mode Fault Error.) For the state of the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit is low for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless of the state of the data direction register of the shared I/O port.
Freescale Semiconductor, Inc...
The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and reading the port data register. (See Table 20-3.) Table 20-3. SPI Configuration
SPE 0 1 1 1 SPMSTR X(1) 0 1 1 MODFEN X X 0 1 SPI Configuration Not enabled Slave Master without MODF Master with MODF State of SS Logic General-purpose I/O; SS ignored by SPI Input-only to SPI General-purpose I/O; SS ignored by SPI Input-only to SPI
Note 1. X = Don't care
20.13.5 CGND (Clock Ground) CGND is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. It is internally connected to VSS as shown in Table 20-1.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 327
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) 20.14 I/O Registers
Three registers control and monitor SPI operation: * * * SPI control register (SPCR) SPI status and control register (SPSCR) SPI data register (SPDR)
20.14.1 SPI Control Register
Freescale Semiconductor, Inc...
The SPI control register: * * * * * Enables SPI module interrupt requests Configures the SPI module as master or slave Selects serial clock polarity and phase Configures the SPSCK, MOSI, and MISO pins as open-drain outputs Enables the SPI module
Address: $0010 Bit 7 Read: SPRIE Write: Reset: 0 0 1 0 1 0 0 0 6 DMAS SPMSTR CPOL CPHA SPWOM SPE SPTIE 5 4 3 2 1 Bit 0
= Unimplemented
Figure 20-13. SPI Control Register (SPCR) SPRIE -- SPI Receiver Interrupt Enable Bit This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit. 1 = SPRF CPU interrupt requests enabled 0 = SPRF CPU interrupt requests disabled
Technical Data 328
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) I/O Registers
DMAS -- DMA Select Bit This read only bit has no effect on this version of the SPI. This bit always reads as a 0. 0 = SPRF DMA and SPTE DMA service requests disabled (SPRF CPU and SPTE CPU interrupt requests enabled) SPMSTR -- SPI Master Bit This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR bit. 1 = Master mode 0 = Slave mode CPOL -- Clock Polarity Bit This read/write bit determines the logic state of the SPSCK pin between transmissions. (See Figure 20-4 and Figure 20-6.) To transmit data between SPI modules, the SPI modules must have identical CPOL values. Reset clears the CPOL bit. CPHA -- Clock Phase Bit This read/write bit controls the timing relationship between the serial clock and SPI data. (See Figure 20-4 and Figure 20-6.) To transmit data between SPI modules, the SPI modules must have identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be set to logic 1 between bytes. (See Figure 20-12.) Reset sets the CPHA bit. SPWOM -- SPI Wired-OR Mode Bit This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins become open-drain outputs. 1 = Wired-OR SPSCK, MOSI, and MISO pins 0 = Normal push-pull SPSCK, MOSI, and MISO pins SPE -- SPI Enable This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 20.10 Resetting the SPI.) Reset clears the SPE bit. 1 = SPI module enabled 0 = SPI module disabled
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 329
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
SPTIE-- SPI Transmit Interrupt Enable This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte transfers from the transmit data register to the shift register. Reset clears the SPTIE bit. 1 = SPTE CPU interrupt requests enabled 0 = SPTE CPU interrupt requests disabled
20.14.2 SPI Status and Control Register
Freescale Semiconductor, Inc...
The SPI status and control register contains flags to signal these conditions: * * * * Receive data register full Failure to clear SPRF bit before next byte is received (overflow error) Inconsistent logic level on SS pin (mode fault error) Transmit data register empty
The SPI status and control register also contains bits that perform these functions: * * * Enable error interrupts Enable mode fault error detection Select master SPI baud rate
Address: $0011 Bit 7 Read: Write: Reset: 0 0 0 0 1 0 0 0 SPRF ERRIE 6 5 OVRF 4 MODF 3 SPTE MODFEN SPR1 SPR0 2 1 Bit 0
= Unimplemented
Figure 20-14. SPI Status and Control Register (SPSCR)
Technical Data 330
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) I/O Registers
SPRF -- SPI Receiver Full Bit This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also. During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register. Reset clears the SPRF bit. 1 = Receive data register full 0 = Receive data register not full ERRIE -- Error Interrupt Enable Bit This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears the ERRIE bit. 1 = MODF and OVRF can generate CPU interrupt requests 0 = MODF and OVRF cannot generate CPU interrupt requests OVRF -- Overflow Bit This clearable, read-only flag is set if software does not read the byte in the receive data register before the next full byte enters the shift register. In an overflow condition, the byte already in the receive data register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI status and control register with OVRF set and then reading the receive data register. Reset clears the OVRF bit. 1 = Overflow 0 = No overflow MODF -- Mode Fault Bit This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with the MODFEN bit set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the MODFEN bit set. Clear the MODF bit by reading the SPI status and control register (SPSCR) with MODF set and then writing to the SPI control register (SPCR). Reset clears the MODF bit. 1 = SS pin at inappropriate logic level 0 = SS pin at appropriate logic level
Freescale Semiconductor, Inc...
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 331
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
SPTE -- SPI Transmitter Empty Bit This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift register. SPTE generates an SPTE CPU interrupt request or an SPTE DMA service request if the SPTIE bit in the SPI control register is set also.
NOTE:
Do not write to the SPI data register unless the SPTE bit is high. During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing to the transmit data register.
Freescale Semiconductor, Inc...
Reset sets the SPTE bit. 1 = Transmit data register empty 0 = Transmit data register not empty MODFEN -- Mode Fault Enable Bit This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is low, then the SS pin is available as a general-purpose I/O. If the MODFEN bit is set, then this pin is not available as a generalpurpose I/O. When the SPI is enabled as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of MODFEN. (See 20.13.4 SS (Slave Select).) If the MODFEN bit is low, the level of the SS pin does not affect the operation of an enabled SPI configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents the MODF flag from being set. It does not affect any other part of SPI operation. (See 20.8.2 Mode Fault Error.) SPR1 and SPR0 -- SPI Baud Rate Select Bits In master mode, these read/write bits select one of four baud rates as shown in Table 20-4. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0.
Technical Data 332
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI) I/O Registers
Table 20-4. SPI Master Baud Rate Selection
SPR1 and SPR0 00 01 10 11 Baud Rate Divisor (BD) 2 8 32 128
Use this formula to calculate the SPI baud rate:
Freescale Semiconductor, Inc...
CGMOUT Baud rate = ------------------------2 x BD where: CGMOUT = base clock output of the clock generator module (CGM) BD = baud rate divisor
20.14.3 SPI Data Register The SPI data register consists of the read-only receive data register and the write-only transmit data register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register reads data from the receive data register. The transmit data and receive data registers are separate registers that can contain different values. (See Figure 20-2.)
Address: $0012 Bit 7 Read: Write: Reset: R7 T7 6 R6 T6 5 R5 T5 4 R4 T4 3 R3 T3 2 R2 T2 1 R1 T1 Bit 0 R0 T0
Unaffected by reset
Figure 20-15. SPI Data Register (SPDR) R7-R0/T7-T0 -- Receive/Transmit Data Bits
NOTE:
Do not use read-modify-write instructions on the SPI data register since the register read is not the same as the register written.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com
Technical Data 333
Freescale Semiconductor, Inc.
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor, Inc...
Technical Data 334
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Serial Peripheral Interface Module (SPI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 21. Timebase Module (TBM)
21.1 Contents
21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . . 337 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Freescale Semiconductor, Inc...
21.3 21.4 21.5 21.6
21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339 21.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 21.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
21.2 Introduction
This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the external crystal clock. This TBM version uses 15 divider stages, eight of which are user selectable.
21.3 Features
Features of the TBM module include: * Software programmable 1-Hz, 4-Hz, 16-Hz, 256-Hz, 512-Hz, 1024-Hz, 2048-Hz, and 4096-Hz periodic interrupt using external 32.768-kHz crystal User selectable oscillator clock source enable during stop mode to allow periodic wakeup from stop
*
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timebase Module (TBM) For More Information On This Product, Go to: www.freescale.com
Technical Data 335
Freescale Semiconductor, Inc.
Timebase Module (TBM) 21.4 Functional Description
NOTE:
This module is designed for a 32.768-kHz oscillator. This module can generate a periodic interrupt by dividing the crystal frequency, CGMXCLK. The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 21-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period.
Freescale Semiconductor, Inc...
TBON
CGMXCLK
/2
/2
/2 /8
/2
/2 / 16
/2 / 32
/2 / 64 / 128
TBMINT
/2
/2
/2
/2
/2 / 2048
/2
/2 / 8192
/2 / 32768
TACK
TBR2
TBR1
TBR0
TBIF 000 001 010 011 100 101 110 111 SEL R
TBIE
Figure 21-1. Timebase Block Diagram
Technical Data 336
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timebase Module (TBM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timebase Module (TBM) Timebase Register Description
21.5 Timebase Register Description
The timebase has one register, the TBCR, which is used to enable the timebase interrupts and set the rate.
Address: $001C Bit 7 Read: TBIF TBR2 TBR1 0 TBR0 TACK 0 0 0 0 R 0 = Reserved 0 0 6 5 4 3 0 TBIE TBON R 2 1 Bit 0
Freescale Semiconductor, Inc...
Write: Reset:
= Unimplemented
Figure 21-2. Timebase Control Register (TBCR) TBIF -- Timebase Interrupt Flag This read-only flag bit is set when the timebase counter has rolled over. 1 = Timebase interrupt pending 0 = Timebase interrupt not pending TBR2:TBR0 -- Timebase Rate Selection These read/write bits are used to select the rate of timebase interrupts as shown in Table 21-1. Table 21-1. Timebase Rate Selection for OSC1 = 32.768-kHz
TBR2 0 0 0 0 1 1 1 1 TBR1 0 0 1 1 0 0 1 1 TBR0 0 1 0 1 0 1 0 1 Divider 32768 8192 2048 128 64 32 16 8 Timebase Interrupt Rate Hz 1 4 16 256 512 1024 2048 4096 ms 1000 250 62.5 ~ 3.9 ~2 ~1 ~0.5 ~0.24
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timebase Module (TBM) For More Information On This Product, Go to: www.freescale.com
Technical Data 337
Freescale Semiconductor, Inc.
Timebase Module (TBM)
NOTE:
Do not change TBR2:TBR0 bits while the timebase is enabled (TBON = 1). TACK -- Timebase ACKnowledge The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic 0 to this bit has no effect. 1 = Clear timebase interrupt flag 0 = No effect
Freescale Semiconductor, Inc...
TBIE -- Timebase Interrupt Enabled This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit. 1 = Timebase interrupt enabled 0 = Timebase interrupt disabled TBON -- Timebase Enabled This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBON bit. 1 = Timebase enabled 0 = Timebase disabled and the counter initialized to 0s
21.6 Interrupts
The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2:TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. Interrupts must be acknowledged by writing a logic 1 to the TACK bit.
Technical Data 338
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timebase Module (TBM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timebase Module (TBM) Low-Power Modes
21.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
21.7.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction.
Freescale Semiconductor, Inc...
21.7.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the OSCSTOPEN bit in the CONFIG register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during STOP mode. In stop mode the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timebase Module (TBM) For More Information On This Product, Go to: www.freescale.com
Technical Data 339
Freescale Semiconductor, Inc.
Timebase Module (TBM)
Freescale Semiconductor, Inc...
Technical Data 340
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timebase Module (TBM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 22. Timer Interface Module (TIM)
22.1 Contents
22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Freescale Semiconductor, Inc...
22.3 22.4
22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 22.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 22.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 22.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 22.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 348 22.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . 349 22.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 349 22.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 350 22.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 351 22.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 22.8 22.9 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 354 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 22.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 356 22.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 22.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 359 22.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .360 22.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 341
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) 22.2 Introduction
This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 22-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.
Freescale Semiconductor, Inc...
22.3 Features
Features of the TIM include: * Two input capture/output compare channels: - Rising-edge, falling-edge, or any-edge input capture trigger - Set, clear, or toggle output compare action * * * * * Buffered and unbuffered pulse-width-modulation (PWM) signal generation Programmable TIM clock input with 7-frequency internal bus clock prescaler selection Free-running or modulo up-count operation Toggle any channel pin on overflow TIM counter stop and reset bits
Technical Data 342
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Pin Name Conventions
22.4 Pin Name Conventions
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where "1" is used to indicate TIM1 and "2" is used to indicate TIM2. The two TIMs share four I/O pins with four port D I/O port pins. The full names of the TIM I/O pins are listed in Table 22-1. The generic pin names appear in the text that follows. Table 22-1. Pin Name Conventions
Freescale Semiconductor, Inc...
TIM Generic Pin Names: Full TIM Pin Names: TIM1 TIM2
T[1,2]CH0 PTD4/T1CH0 PTD6/T2CH0
T[1,2]CH1 PTD5/T1CH1 PTD7/T2CH1
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.
22.5 Functional Description
Figure 22-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels (per timer) are programmable independently as input capture or output compare channels. If a channel is configured as input capture, then an internal pullup device may be enabled for that channel. (See 16.6.3 Port D Input Pullup Enable Register.)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 343
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
PRESCALER SELECT INTERNAL BUS CLOCK TSTOP TRST 16-BIT COUNTER 16-BIT COMPARATOR PRESCALER
PS2
PS1
PS0
TOF TOIE
INTERRUPT LOGIC
Freescale Semiconductor, Inc...
TMODH:TMODL TOV0 CHANNEL 0 16-BIT COMPARATOR TCH0H:TCH0L 16-BIT LATCH MS0A MS0B TOV1 INTERNAL BUS CHANNEL 1 16-BIT COMPARATOR TCH1H:TCH1L 16-BIT LATCH MS1A CH1IE CH1F INTERRUPT LOGIC ELS1B ELS1A CH1MAX PORT LOGIC T[1,2]CH1 CH0IE CH0F INTERRUPT LOGIC ELS0B ELS0A CH0MAX PORT LOGIC T[1,2]CH0
Figure 22-1. TIM Block Diagram Figure 22-2 summarizes the timer registers.
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC.
Technical Data 344
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
Addr.
Register Name
Bit 7 TOF
6 TOIE
5 TSTOP
4 0 TRST
3 0
2 PS2
1 PS1 0 9
Bit 0 PS0 0 Bit 8
Read: Timer 1 Status and Control $0020 Register Write: (T1SC) Reset: Read: Timer 1 Counter Register High Write: (T1CNTH) Reset: Read: Timer 1 Counter Register Low Write: (T1CNTL) Reset: Read: Timer 1 Counter Modulo Register High Write: (T1MODH) Reset: Read: Timer 1 Counter Modulo Register Low Write: (T1MODL) Reset:
0 0 Bit 15 0 14 1 13
0 12
0 11
0 10
$0021
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
Freescale Semiconductor, Inc...
$0022
0 Bit 15 1 Bit 7 1 CH0F
0 14 1 6 1 CH0IE
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$0023
$0024
Read: Timer 1 Channel 0 Status $0025 and Control Register Write: (T1SC0) Reset: Read: Timer 1 Channel 0 Register High Write: (T1CH0H) Reset: Read: Timer 1 Channel 0 Register Low Write: (T1CH0L) Reset:
0 0 Bit 15 0 14
$0026
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$0027
Indeterminate after reset CH1F CH1IE 0 0 0 0 0 0 0 0 0 0 MS1A ELS1B ELS1A TOV1 CH1MAX
Read: Timer 1 Channel 1 Status $0028 and Control Register Write: (T1SC1) Reset:
= Unimplemented
Figure 22-2. TIM I/O Register Summary (Sheet 1 of 3)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 345
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Addr.
Register Name Read: Timer 1 Channel 1 Register High Write: (T1CH1H) Reset: Read: Timer 1 Channel 1 Register Low Write: (T1CH1L) Reset:
Bit 7 Bit 15
6 14
5 13
4 12
3 11
2 10
1 9
Bit 0 Bit 8
$0029
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$002A
Indeterminate after reset TOF TOIE 0 0 Bit 15 0 14 1 13 TSTOP TRST 0 12 0 11 0 10 0 9 0 Bit 8 0 0 PS2 PS1 PS0
Freescale Semiconductor, Inc...
Read: Timer 2 Status and Control $002B Register Write: (T2SC) Reset: Read: Timer 2 Counter Register High Write: (T2CNTH) Reset: Read: Timer 2 Counter Register Low Write: (T2CNTL) Reset: Read: Timer 2 Counter Modulo Register High Write: (T2MODH) Reset: Read: Timer 2 Counter Modulo Register Low Write: (T2MODL) Reset:
$002C
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
$002D
0 Bit 15 1 Bit 7 1 CH0F
0 14 1 6 1 CH0IE
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$002E
$002F
Read: Timer 2 Channel 0 Status $0030 and Control Register Write: (T2SC0) Reset: Read: Timer 2 Channel 0 Register High Write: (T2CH0H) Reset:
0 0 Bit 15 0 14
$0031
Indeterminate after reset = Unimplemented
Figure 22-2. TIM I/O Register Summary (Sheet 2 of 3)
Technical Data 346
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
Addr.
Register Name Read: Timer 2 Channel 0 Register Low Write: (T2CH0L) Reset:
Bit 7 Bit 7
6 6
5 5
4 4
3 3
2 2
1 1
Bit 0 Bit 0
$0032
Indeterminate after reset CH1F CH1IE 0 0 Bit 15 0 14 0 13 0 12 0 11 0 10 0 9 0 Bit 8 0 MS1A ELS1B ELS1A TOV1 CH1MAX
Read: Timer 2 Channel 1 Status $0033 and Control Register Write: (T2SC1) Reset:
Freescale Semiconductor, Inc...
$0034
Read: Timer 2 Channel 1 Register High Write: (T2CH1H) Reset: Read: Timer 2 Channel 1 Register Low Write: (T2CH1L) Reset:
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$0035
Indeterminate after reset = Unimplemented
Figure 22-2. TIM I/O Register Summary (Sheet 3 of 3) 22.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source.
22.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 347
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
22.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests.
22.5.3.1 Unbuffered Output Compare
Freescale Semiconductor, Inc...
Any output compare channel can generate unbuffered output compare pulses as described in 22.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: * When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.
*
Technical Data 348
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
22.5.3.2 Buffered Output Compare
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
Freescale Semiconductor, Inc...
NOTE:
In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.
22.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 22-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 349
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 22.10.1 TIM Status and Control Register.
OVERFLOW OVERFLOW OVERFLOW
PERIOD
Freescale Semiconductor, Inc...
PULSE WIDTH TCHx
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 22-3. PWM Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%.
22.5.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as described in 22.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.
Technical Data 350 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: * When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
*
Freescale Semiconductor, Inc...
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.
22.5.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 351
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.
22.5.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure:
Freescale Semiconductor, Inc...
1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 22-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 22-3.)
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.
Technical Data 352
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Interrupts
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM channel 0 status and control register (TSC0) controls and monitors the PWM signal from the linked channels. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output.
Freescale Semiconductor, Inc...
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 22.10.4 TIM Channel Status and Control Registers.)
22.6 Interrupts
The following TIM sources can generate interrupt requests: * TIM overflow flag (TOF) -- The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. TIM channel flags (CH1F:CH0F) -- The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register.
*
22.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 353
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
22.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.
Freescale Semiconductor, Inc...
22.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.
22.8 TIM During Break Interrupts
A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See 19.8.3 SIM Break Flag Control Register. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
Technical Data 354
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Signals
22.9 I/O Signals
Port D shares four of its pins with the TIM. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0, and T2CH1 as described in 22.4 Pin Name Conventions. Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins.
Freescale Semiconductor, Inc...
22.10 I/O Registers
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC AND T2SC. These I/O registers control and monitor operation of the TIM: * * * * * TIM status and control register (TSC) TIM counter registers (TCNTH:TCNTL) TIM counter modulo registers (TMODH:TMODL) TIM channel status and control registers (TSC0, TSC1) TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 355
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
22.10.1 TIM Status and Control Register The TIM status and control register (TSC): * * * * * Enables TIM overflow interrupts Flags TIM overflows Stops the TIM counter Resets the TIM counter Prescales the TIM counter clock
Freescale Semiconductor, Inc...
Address: T1SC, $0020 and T2SC, $002B Bit 7 Read: Write: Reset: TOF TOIE 0 0 0 1 TSTOP TRST 0 0 0 0 0 6 5 4 0 3 0 PS2 PS1 PS0 2 1 Bit 0
= Unimplemented
Figure 22-4. TIM Status and Control Register (TSC) TOF -- TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE -- TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled
Technical Data 356 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
TSTOP -- TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST -- TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect
Freescale Semiconductor, Inc...
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS[2:0] -- Prescaler Select Bits These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 22-2 shows. Reset clears the PS[2:0] bits. Table 22-2. Prescaler Selection
PS2 0 0 0 0 1 1 1 1 PS1 0 0 1 1 0 0 1 1 PS0 0 1 0 1 0 1 0 1 TIM Clock Source Internal bus clock / 1 Internal bus clock / 2 Internal bus clock / 4 Internal bus clock / 8 Internal bus clock / 16 Internal bus clock / 32 Internal bus clock / 64 Not available
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 357
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
22.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.
NOTE:
Freescale Semiconductor, Inc...
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break.
Address: T1CNTH, $0021 and T2CNTH, $002C Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 Bit 15 6 14 5 13 4 12 3 11 2 10 1 9 Bit 0 Bit 8
= Unimplemented
Figure 22-5. TIM Counter Registers High (TCNTH)
Address: T1CNTL, $0022 and T2CNTL, $002D Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 Bit 7 6 6 5 5 4 4 3 3 2 2 1 1 Bit 0 Bit 0
= Unimplemented
Figure 22-6. TIM Counter Registers Low (TCNTL)
Technical Data 358
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
22.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.
Address: T1MODH, $0023 and T2MODH, $002E Bit 7 Read: Bit 15 Write: Reset: 1 1 1 1 1 1 1 1 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 22-7. TIM Counter Modulo Register High (TMODH)
Address: T1MODL, $0024 and T2MODL, $002F Bit 7 Read: Bit 7 Write: Reset: 1 1 1 1 1 1 1 1 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 22-8. TIM Counter Modulo Register Low (TMODL)
NOTE:
Reset the TIM counter before writing to the TIM counter modulo registers.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 359
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
22.10.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers: * * * * * Flags input captures and output compares Enables input capture and output compare interrupts Selects input capture, output compare, or PWM operation Selects high, low, or toggling output on output compare Selects rising edge, falling edge, or any edge as the active input capture trigger Selects output toggling on TIM overflow Selects 0% and 100% PWM duty cycle Selects buffered or unbuffered output compare/PWM operation
Freescale Semiconductor, Inc...
* * *
Address: T1SC0, $0025 and T2SC0, $0030 Bit 7 Read: Write: Reset: CH0F CH0IE 0 0 0 0 0 0 0 0 0 MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 6 5 4 3 2 1 Bit 0
Figure 22-9. TIM Channel 0 Status and Control Register (TSC0)
Address: T1SC1, $0028 and T2SC1, $0033 Bit 7 Read: Write: Reset: CH1F CH1IE 0 0 0 0 0 0 0 0 0 6 5 0 MS1A ELS1B ELS1A TOV1 CH1MAX 4 3 2 1 Bit 0
= Unimplemented
Figure 22-10. TIM Channel 1 Status and Control Register (TSC1)
Technical Data 360
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
CHxF -- Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE -- Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB -- Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA -- Mode Select Bit A When ELSxB:ELSxA 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 22-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com Technical Data 361
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See Table 22-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA -- Edge/Level Select Bits
Freescale Semiconductor, Inc...
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTDx/TCHx is available as a general-purpose I/O pin. Table 22-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 22-3. Mode, Edge, and Level Selection
MSxB:MSxA X0 X1 00 00 00 01 01 01 1X 1X 1X ELSxB:ELSxA 00 Output preset 00 01 10 11 01 10 11 01 10 11 Output compare or PWM Buffered output compare or buffered PWM Input capture Pin under port control; initial output level low Capture on rising edge only Capture on falling edge only Capture on rising or falling edge Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare Mode Configuration Pin under port control; initial output level high
Technical Data 362
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
NOTE:
Before enabling a TIM channel register for input capture operation, make sure that the PTDx/TCHx pin is stable for at least two bus clocks. TOVx -- Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow 0 = Channel x pin does not toggle on TIM counter overflow
Freescale Semiconductor, Inc...
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX -- Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 22-11 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.
OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW
PERIOD TCHx
OUTPUT COMPARE CHxMAX
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 22-11. CHxMAX Latency 22.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 363
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.
Address: T1CH0H, $0026 and T2CH0H, $0031 Bit 7 6 14 5 13 4 12 3 11 2 10 1 9 Bit 0 Bit 8
Freescale Semiconductor, Inc...
Read: Bit 15 Write: Reset: Indeterminate after reset
Figure 22-12. TIM Channel 0 Register High (TCH0H)
Address: T1CH0L, $0027 and T2CH0L $0032 Bit 7 Read: Bit 7 Write: Reset: Indeterminate after reset 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 22-13. TIM Channel 0 Register Low (TCH0L)
Address: T1CH1H, $0029 and T2CH1H, $0034 Bit 7 Read: Bit 15 Write: Reset: Indeterminate after reset 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 22-14. TIM Channel 1 Register High (TCH1H)
Address: T1CH1L, $002A and T2CH1L, $0035 Bit 7 Read: Bit 7 Write: Reset: Indeterminate after reset 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 22-15. TIM Channel 1 Register Low (TCH1L)
Technical Data 364 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 23. Electrical Specifications
23.1 Contents
23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .366 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 367 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 5.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 368 3.0-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . 370 5.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 3.0-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Freescale Semiconductor, Inc...
23.3 23.4 23.5 23.6 23.7 23.8 23.9
23.10 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . .374 23.11 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . . 377 23.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 23.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 23.14 5.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 23.15 3.0-V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 23.16 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 387 23.17 Clock Generation Module Characteristics . . . . . . . . . . . . . . . 387 23.17.1 CGM Component Specifications . . . . . . . . . . . . . . . . . . . . 387 23.17.2 CGM Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . 388 23.18 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 365
Freescale Semiconductor, Inc.
Electrical Specifications 23.2 Introduction
This section contains electrical and timing specifications.
23.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.
Freescale Semiconductor, Inc...
NOTE:
This device is not guaranteed to operate properly at the maximum ratings. Refer to 23.6 5.0-V DC Electrical Characteristics for guaranteed operating conditions.
Characteristic(1) Supply voltage Input voltage Maximum current per pin excluding VDD, VSS , and PTC0-PTC4 Maximum current for pins PTC0-PTC4 Maximum current into VDD Maximum current out of VSS Storage temperature
Note: 1. Voltages referenced to VSS
Symbol VDD VIn I
Value -0.3 to + 6.0 VSS - 0.3 to VDD + 0.3
Unit V V mA
15
IPTC0-PTC4 Imvdd Imvss Tstg
25
150 150 -55 to +150
mA mA mA
C
NOTE:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIn and VOut be constrained to the range VSS (VIn or VOut) VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD).
Technical Data 366
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Functional Operating Range
23.4 Functional Operating Range
Characteristic Operating temperature range Operating voltage range Symbol TA VDD Value -40 to +85 3.0 10% 5.0 10% Unit
C
V
Freescale Semiconductor, Inc...
23.5 Thermal Characteristics
Characteristic Thermal resistance 40-pin PDIP 42-pin SDIP 44-pin QFP I/O pin power dissipation Power dissipation(1) Symbol Value 60 60 95 User determined PD = (IDD x VDD) + PI/O = K/(TJ + 273 C) PD x (TA + 273 C) + PD2 x JA TA + (PD x JA) Unit
JA
C/W
PI/O PD
W W
Constant(2) Average junction temperature
K TJ
W/C
C
Notes: 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 367
Freescale Semiconductor, Inc.
Electrical Specifications 23.6 5.0-V DC Electrical Characteristics
Characteristic(1) Output high voltage (ILoad = -2.0 mA) all I/O pins (ILoad = -10.0 mA) all I/O pins (ILoad = -10.0 mA) pins PTC0-PTC4 only Maximum combined IOH for port C, port E, port PTD0-PTD3 Maximum combined IOH for port PTD4-PTD7, port A, port B Maximum total IOH for all port pins Output low voltage (ILoad = 1.6 mA) all I/O pins (ILoad = 10 mA) all I/O pins (ILoad = 15 mA) pins PTC0-PTC4 only Maximum combined IOL for port C, port E, port PTD0-PTD3 Maximum combined IOL for port PTD4-PTD7, port A, port B Maximum total IOL for all port pins Input high voltage All ports, IRQ, RST, OSC1 Input low voltage All ports, IRQ, RST, OSC1 VDD supply current Run(3) Wait(4) Stop(5) 25 C 25 C with TBM enabled(6) 25 C with LVI and TBM enabled(6) -40 C to 85 C with TBM enabled(6) -40 C to 85 C with LVI and TBM enabled(6) I/O ports Hi-Z leakage current(7) Input current Pullup resistors (as input only) Ports PTA7/KBD7-PTA0/KBD0, PTC6-PTC0, PTD7/T2CH1-PTD0/SS Capacitance Ports (as input or output) Monitor mode entry voltage IDD Symbol Min Typ(2) -- -- -- -- -- -- -- -- -- -- -- -- -- -- Max Unit
VOH VOH VOH IOH1 IOH2 IOHT VOL VOL VOL IOL1 IOL2 IOLT VIH VIL
VDD - 0.8 VDD - 1.5 VDD - 0.8 -- -- -- -- -- -- -- -- -- 0.7 x VDD VSS
-- -- -- 50 50 100 0.4 1.5 1.0 50 50 100 VDD 0.2 x VDD
V V V mA mA mA V V V mA mA mA V V
Freescale Semiconductor, Inc...
-- --
15 4
20 8
mA mA
-- -- -- -- -- -- -- 20 -- -- VDD + 2.5
3 20 300 50 500 -- -- 45 -- -- --
-- -- -- -- --
A A A A A A A
k
IIL IIn RPU COut CIn VTST
10 1
65 12 8 9
pF V
Technical Data 368
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 5.0-V DC Electrical Characteristics
Characteristic(1) Low-voltage inhibit, trip falling voltage Low-voltage inhibit, trip rising voltage Low-voltage inhibit reset/recover hysteresis (VTRIPF + VHYS = VTRIPR) POR rearm voltage(8) POR reset voltage(9) POR rise time ramp rate(10)
Symbol VTRIPF VTRIPR VHYS VPOR VPORRST RPOR
Min 3.90 4.20 -- 0 0 0.035
Typ(2) 4.25 4.35 100 -- 700 --
Max 4.50 4.60 -- 100 800 --
Unit V V mV mV mV V/ms
Freescale Semiconductor, Inc...
Notes: 1. VDD = 5.0 Vdc 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. Measured with PLL and LVI enabled. 5. Stop IDD is measured with OSC1 = VSS. 6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs. 7. Pullups and pulldowns are disabled. Port B leakage is specified in 23.13 ADC Characteristics. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. 10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 369
Freescale Semiconductor, Inc.
Electrical Specifications 23.7 3.0-V DC Electrical Characteristics
Characteristic(1) Output high voltage (ILoad = -0.6 mA) all I/O pins (ILoad = -4.0 mA) all I/O pins (ILoad = -4.0 mA) pins PTC0-PTC4 only Maximum combined IOH for port C, port E, port PTD0-PTD3 Maximum combined IOH for port PTD4-PTD7, port A, port B Maximum total IOH for all port pins Output low voltage (ILoad = 0.5 mA) all I/O pins (ILoad = 6.0 mA) all I/O pins (ILoad = 10.0 mA) pins PTC0-PTC4 only Maximum combined IOL for port C, port E, port PTD0-PTD3 Maximum combined IOL for port PTD4-PTD7, port A, port B Maximum total IOL for all port pins Input high voltage All ports, IRQ, RST, OSC1 Input low voltage All ports, IRQ, RST, OSC1 VDD supply current Run(3) Wait(4) Stop(5) 25 C 25 C with TBM enabled(6) 25 C with LVI and TBM enabled(6) -40 C to 85 C with TBM enabled(6) -40 C to 85 C with LVI and TBM enabled(6) I/O ports Hi-Z leakage current(7) Input current Pullup resistors (as input only) Ports PTA7/KBD7-PTA0/KBD0, PTC6-PTC0, PTD7/T2CH1-PTD0/SS Capacitance Ports (as input or output) Monitor mode entry voltage IDD Symbol Min Typ(2) -- -- -- -- -- -- -- -- -- -- -- -- -- -- Max Unit
VOH VOH VOH IOH1 IOH2 IOHT VOL VOL VOL IOL1 IOL2 IOLT VIH VIL
VDD - 0.3 VDD - 1.0 VDD - 0.5 -- -- -- -- -- -- -- -- -- 0.7 x VDD VSS
-- -- -- 30 30 60 0.3 1.0 0.8 30 30 60 VDD 0.3 x VDD
V V V mA mA mA V V V mA mA mA V V
Freescale Semiconductor, Inc...
-- --
4.5 1.65
8 4
mA mA
-- -- -- -- -- -- -- 20 -- -- VDD + 2.5
2 12 200 30 300 -- -- 45 -- -- --
-- -- -- -- --
A A A A A A A
k
IIL IIn RPU COut CIn VTST
10 1
65 12 8 9
pF V
Technical Data 370
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 3.0-V DC Electrical Characteristics
Characteristic(1) Low-voltage inhibit, trip falling voltage Low-voltage inhibit, trip rising voltage Low-voltage inhibit reset/recover hysteresis (VTRIPF + VHYS = VTRIPR) POR rearm voltage(8) POR reset voltage(9) POR rise time ramp rate(10)
Symbol VTRIPF VTRIPR VHYS VPOR VPORRST RPOR
Min 2.45 2.55 -- 0 0 0.02
Typ(2) 2.60 2.66 60 -- 700 --
Max 2.70 2.80 -- 100 800 --
Unit V V mV mV mV V/ms
Freescale Semiconductor, Inc...
Notes: 1. VDD = 3.0 Vdc 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. Measured with PLL and LVI enabled. 5. Stop IDD is measured with OSC1 = VSS. 6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs. 7. Pullups and pulldowns are disabled. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. 10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 371
Freescale Semiconductor, Inc.
Electrical Specifications 23.8 5.0-V Control Timing
Characteristic(1) Frequency of operation(2) Crystal option External clock option(3) Internal operating frequency Internal clock period (1/fOP) Symbol Min Max Unit
fOSC fOP (fBUS) tCYC tIRL tILIH tILIL tTH,tTL tTLTL
32 dc(4) -- 122 50 50 Note 8
100 32.8 8.2 -- -- -- --
kHz MHz MHz ns ns ns tCYC ns tCYC
Freescale Semiconductor, Inc...
RST input pulse width low(5) IRQ interrupt pulse width low(6) (edge-triggered) IRQ interrupt pulse period 16-bit timer(7) Input capture pulse width Input capture period
Note 8
-- --
Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted. 2. See 23.17 Clock Generation Module Characteristics for more information. 3. No more than 10% duty cycle deviation from 50% 4. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this information. 5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. 6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to execute the interrupt service routine plus tCYC.
Technical Data 372
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 3.0-V Control Timing
23.9 3.0-V Control Timing
Characteristic(1) Frequency of operation(2) Crystal option External clock option(3) Internal operating frequency Internal clock period (1/fOP) Symbol Min Max Unit
fOSC fOP (fBUS) tCYC tIRL tILIH tILIL tTH,tTL tTLTL
32 dc(4) -- 244 125 125 Note 8
100 16.4 4.1 -- -- -- --
kHz MHz MHz ns ns ns tCYC ns tCYC
Freescale Semiconductor, Inc...
RST input pulse width low(5) IRQ interrupt pulse width low(6) (edge-triggered) IRQ interrupt pulse period 16-bit timer(7) Input capture pulse width Input capture period
Note 8
-- --
Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted. 2. See 23.17 Clock Generation Module Characteristics for more information. 3. No more than 10% duty cycle deviation from 50% 4. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this information. 5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. 6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. 8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to execute the interrupt service routine plus tCYC.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 373
Freescale Semiconductor, Inc.
Electrical Specifications 23.10 Output High-Voltage Characteristics
0 -5 -10 IOH (mA) -15 -20 -25 -30 -40 0 25 85
Freescale Semiconductor, Inc...
-35 -40 3 3.2 3.4 3.6 VOH (V) 3.8 4.0 4.2
VOH > VDD -0.8 V @ IOH = -2.0 mA VOH > VDD -1.5 V @ IOH = -10.0 mA
Figure 23-1. Typical High-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 4.5 Vdc)
0 -5 -10 -15 -20 -25 1.3 1.5 1.7 1.9 VOH (V) 2.1 2.3 2.5 -40 0 25 85 IOH (mA)
VOH > VDD -0.3 V @ IOH = -0.6 mA VOH > VDD -1.0 V @ IOH = -4.0 mA
Figure 23-2. Typical High-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 2.7 Vdc)
Technical Data 374
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Output High-Voltage Characteristics
0 -5 -10 IOH (mA) -15 -20 -25 -30 -35 -40 3 3.2 3.4 3.6 VOH (V) 3.8 4.0 4.2 -40 0 25 85
Freescale Semiconductor, Inc...
VOH > VDD -0.8 V @ IOH = -10.0 mA
Figure 23-3. Typical High-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 4.5 Vdc)
0 -5 -10 -15 -20 -25 1.3 1.5 1.7 1.9 VOH (V) 2.1 2.3 2.5 -40 0 25 85 IOH (mA)
VOH > VDD -0.5 V @ IOH = -4.0 mA
Figure 23-4. Typical High-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 2.7 Vdc)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 375
Freescale Semiconductor, Inc.
Electrical Specifications
0 -10 -20 -30 IOH (mA) -40 -50 -60 -70 -80 -90 3 3.2 3.4 3.6 3.8 VOH (V) 4.0 4.2 4.4 4.6 -40 0 25 85
Freescale Semiconductor, Inc...
VOH > VDD -0.8 V @ IOH = -2.0 mA VOH > VDD -1.5 V @ IOH = -10.0 mA
Figure 23-5. Typical High-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 5.5 Vdc)
0 -5 -10 -15 -20 -25 1.3 1.5 1.7 1.9 VOH (V) 2.1 2.3 2.5 -40 0 25 85 IOH (mA)
VOH > VDD -0.3 V @ IOH = -0.6 mA VOH > VDD -1.0 V @ IOH = -4.0 mA
Figure 23-6. Typical High-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 2.7 Vdc)
Technical Data 376
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Output Low-Voltage Characteristics
23.11 Output Low-Voltage Characteristics
35 30 25 IOL (mA) 20 15 10 5 -40 0 25 85
Freescale Semiconductor, Inc...
0 0 0.2 0.4 0.6 0.8 1.0 VOL (V) 1.2 1.4 1.6
VOL < 0.4 V @ IOL = 1.6 mA VOL < 1.5 V @ IOL = 10.0 mA
Figure 23-7. Typical Low-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 5.5 Vdc)
14 12 10 IOL (mA) 8 6 4 2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 0.3 V @ IOL = 0.5 mA VOL < 1.0 V @ IOL = 6.0 mA -40 0 25 85
Figure 23-8. Typical Low-Side Driver Characteristics - Port PTA7-PTA0 (VDD = 2.7 Vdc)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 377
Freescale Semiconductor, Inc.
Electrical Specifications
60 50 IOL (mA) 40 30 20 10 0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 1.0 V @ IOL = 15 mA -40 0 25 85
Freescale Semiconductor, Inc...
Figure 23-9. Typical Low-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 4.5 Vdc)
30 25 IOL (mA) 20 15 10 5 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VOL (V) VOL < 0.8 V @ IOL = 10 mA -40 0 25 85
Figure 23-10. Typical Low-Side Driver Characteristics - Port PTC4-PTC0 (VDD = 2.7 Vdc)
Technical Data 378
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Output Low-Voltage Characteristics
35 30 25 IOL (mA) 20 15 10 5 0 0 0.2 0.4 0.6 0.8 VOL (V) 1.0 1.2 1.4 1.6 -40 0 25 85
Freescale Semiconductor, Inc...
VOL < 0.4 V @ IOL = 1.6 mA VOL < 1.5 V @ IOL = 10.0 mA
Figure 23-11. Typical Low-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 5.5 Vdc)
14 12 10 IOL (mA) 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1.0 VOL (V) 1.2 1.4 1.6 -40 0 25 85
VOL < 0.3 V @ IOL = 0.5 mA VOL < 1.0 V @ IOL = 6.0 mA
Figure 23-12. Typical Low-Side Driver Characteristics - Ports PTB7-PTB0, PTC6-PTC5, PTD7-PTD0, and PTE1-PTE0 (VDD = 2.7 Vdc)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 379
Freescale Semiconductor, Inc.
Electrical Specifications 23.12 Typical Supply Currents
16 14 12 10 IDD (mA) 8 6
Freescale Semiconductor, Inc...
4 2 0 0 1 2 3 4 5 fBUS (MHz) 6 7 8 9 5.5 V 3.6 V
Figure 23-13. Typical Operating IDD, with All Modules Turned On (-40 C to 85 C)
5.0 4.5 4.0 3.5 IDD (mA) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 1 2 3 4 fBUS (MHz) 5 6 7 8 5.5 V 3.6 V
Figure 23-14. Typical Wait Mode IDD, with all Modules Disabled (-40 C to 85 C)
Technical Data 380
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Typical Supply Currents
1.35 1.30 1.25 1.20 1.15 1.10
IDD (A)
Freescale Semiconductor, Inc...
1.05 1 0 1 2 3 4 5 fBUS (MHz) 6 7
5.5 V 3.6 V
8
9
Figure 23-15. Typical Stop Mode IDD, with all Modules Disabled (-40 C to 85 C)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 381
Freescale Semiconductor, Inc.
Electrical Specifications 23.13 ADC Characteristics
Characteristic(1) Symbol Min Max Unit Comments VDDAD should be tied to the same potential as VDD via separate traces. VADIN VREFH
Supply voltage
VDDAD
2.7 (VDD min) 0 8 --
5.5 (VDD max) VDDAD 8
V
Input voltages
VADIN BAD AAD
V Bits LSB
Freescale Semiconductor, Inc...
Resolution Absolute accuracy (VREFL = 0 V, VREFH = VDDAD = 5 V 10%) ADC internal clock
1
Includes quantization tAIC = 1/fADIC, tested only at 1 MHz VREFH = VDDAD VREFL = VSSAD
fADIC RAD tADPU tADC tADS ZADI FADI CADI --
0.5 VREFL 16 16 5 00 FE -- --
1.048 VREFH
MHz
Conversion range Power-up time Conversion time Sample time(2) Zero input reading(3) Full-scale reading(3) Input capacitance Input leakage(4) Port B
V tAIC cycles
17 -- 01 FF (20) 8
tAIC cycles tAIC cycles Hex Hex pF VIN = VREFL VIN = VREFH Not tested
1
A
Notes: 1. VDD = 5.0 Vdc 10%, VSS = 0 Vdc, VDDAD = 5.0 Vdc 10%, VSSAD = 0 Vdc, VREFH = 5.0 Vdc 10%, VREFL = 0 2. Source impedances greater than 10 k adversely affect internal RC charging time during input sampling. 3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 4. The external system error caused by input leakage current is approximately equal to the product of R source and input current.
Technical Data 382
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 5.0-V SPI Characteristics
23.14 5.0-V SPI Characteristics
Diagram Number(1) Characteristic(2) Operating frequency Master Slave 1 Cycle time Master Slave Enable lead time Enable lag time Clock (SPSCK) high time Master Slave Clock (SPSCK) low time Master Slave Data setup time (inputs) Master Slave Data hold time (inputs) Master Slave Access time, slave(3) CPHA = 0 CPHA = 1 Disable time, slave(4) Data valid time, after enable edge Master Slave(5) Data hold time, outputs, after enable edge Master Slave Symbol Min Max Unit
fOP(M) fOP(S) tCYC(M) tCYC(S) tLead(S) tLag(S) tSCKH(M) tSCKH(S) tSCKL(M) tSCKL(S) tSU(M) tSU(S) tH(M) tH(S) tA(CP0) tA(CP1) tDIS(S) tV(M) tV(S) tHO(M) tHO(S)
fOP/128 dc 2 1 1 1 tCYC -25 1/2 tCYC -25 tCYC -25 1/2 tCYC -25 30 30 30 30 0 0 -- -- -- 0 0
fOP/2 fOP 128 -- -- -- 64 tCYC -- 64 tCYC -- -- -- -- -- 40 40 40 50 50 -- --
MHz MHz tCYC tCYC tCYC tCYC ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Freescale Semiconductor, Inc...
2 3 4
5
6
7
8 9 10
11
Notes: 1. Numbers refer to dimensions in Figure 23-16 and Figure 23-17. 2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. 3. Time to data active from high-impedance state 4. Hold time to high-impedance state 5. With 100 pF on all SPI pins
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 383
Freescale Semiconductor, Inc.
Electrical Specifications 23.15 3.0-V SPI Characteristics
Diagram Number(1) Characteristic(2) Operating frequency Master Slave 1 Cycle time Master Slave Enable lead time Enable lag time Clock (SPSCK) high time Master Slave Clock (SPSCK) low time Master Slave Data setup time (inputs) Master Slave Data hold time (inputs) Master Slave Access time, slave(3) CPHA = 0 CPHA = 1 Disable time, slave(4) Data valid time, after enable edge Master Slave(5) Data hold time, outputs, after enable edge Master Slave Symbol Min Max Unit
fOP(M) fOP(S) tCYC(M) tCYC(S) tLead(s) tLag(s) tSCKH(M) tSCKH(S) tSCKL(M) tSCKL(S) tSU(M) tSU(S) tH(M) tH(S) tA(CP0) tA(CP1) tDIS(S) tV(M) tV(S) tHO(M) tHO(S)
fOP/128 dc 2 1 1 1 tCYC -35 1/2 tCYC -35 tCYC -35 1/2 tCYC -35 40 40 40 40 0 0 -- -- -- 0 0
fOP/2 fOP 128 -- -- -- 64 tCYC -- 64 tCYC -- -- -- -- -- 50 50 50 60 60 -- --
MHz MHz tCYC tCYC tCYC tCYC ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Freescale Semiconductor, Inc...
2 3 4
5
6
7
8 9 10
11
Notes: 1. Numbers refer to dimensions in Figure 23-16 and Figure 23-17. 2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. 3. Time to data active from high-impedance state 4. Hold time to high-impedance state 5. With 100 pF on all SPI pins
Technical Data 384
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 3.0-V SPI Characteristics
SS INPUT
SS PIN OF MASTER HELD HIGH 1
SPSCK OUTPUT CPOL = 0
NOTE
5 4
SPSCK OUTPUT CPOL = 1
NOTE
5 4 6 7 LSB IN 10 BITS 6-1 11 MASTER LSB OUT
MISO INPUT
MSB IN 11
BITS 6-1
Freescale Semiconductor, Inc...
MOSI OUTPUT
MASTER MSB OUT
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.
a) SPI Master Timing (CPHA = 0)
SS INPUT
SS PIN OF MASTER HELD HIGH 1
SPSCK OUTPUT CPOL = 0
5 4
NOTE
SPSCK OUTPUT CPOL = 1
5 4 6 7 LSB IN 10 BITS 6-1 MASTER LSB OUT
NOTE
MISO INPUT 10 MOSI OUTPUT
MSB IN 11 MASTER MSB OUT
BITS 6-1
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.
b) SPI Master Timing (CPHA = 1)
Figure 23-16. SPI Master Timing
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 385
Freescale Semiconductor, Inc.
Electrical Specifications
SS INPUT 1 SPSCK INPUT CPOL = 0 2 SPSCK INPUT CPOL = 1 8 MISO INPUT SLAVE 6 MOSI OUTPUT MSB IN MSB OUT 7 10 BITS 6-1 BITS 6-1 11 LSB IN SLAVE LSB OUT 11 5 4 9 NOTE 5 4 3
Freescale Semiconductor, Inc...
Note: Not defined but normally MSB of character just received
a) SPI Slave Timing (CPHA = 0)
SS INPUT 1 SPSCK INPUT CPOL = 0 2 SPSCK INPUT CPOL = 1 8 MISO OUTPUT 5 4 10 NOTE SLAVE 6 MOSI INPUT MSB IN MSB OUT 7 10 BITS 6-1 BITS 6-1 11 LSB IN 9 SLAVE LSB OUT 5 4 3
Note: Not defined but normally LSB of character previously transmitted
b) SPI Slave Timing (CPHA = 1)
Figure 23-17. SPI Slave Timing
Technical Data 386
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Timer Interface Module Characteristics
23.16 Timer Interface Module Characteristics
Characteristic Input capture pulse width Symbol tTIH, tTIL Min 1 Max -- Unit tCYC
23.17 Clock Generation Module Characteristics
Freescale Semiconductor, Inc...
23.17.1 CGM Component Specifications
Characteristic External clock(1) Crystal load capacitance(2) Crystal fixed capacitance(2) Crystal tuning capacitance(2) Feedback bias resistor Series resistor Symbol fXCLK CL C1 C2 RB RS Min 30k -- -- -- -- -- Typ 32.768k -- 2 x CL (20) 2 x CL (50) 10 100 Max 1.5M -- -- -- -- -- Unit Hz pF pF pF M k
Notes: 1. When using crystals between 30kHz and 100kHz, use fundamental mode crystals only. 2. Consult crystal manufacturer's data.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 387
Freescale Semiconductor, Inc.
Electrical Specifications
23.17.2 CGM Electrical Specifications
Description Operating voltage Operating temperature Reference frequency Range nominal multiplier Symbol VDD T fRDV fNOM fVRS fVRS L 2E N 2P R fVCLK fBUS fBUS tLock tLock fJ Min 2.7 -40 30 -- 38.4 k 38.4 k 1 1 1 1 1 38.4 k -- -- -- -- Typ -- 25 32.768 38.4 -- -- -- -- -- 1 1 -- -- -- -- -- Max 5.5 85 100 -- 40.0 M 40.0 M 255 4 4095 8 15 40.0 M 8.2 4.1 50 50 fRCLK x 0.025% x 2P N/4 32.8 M 1.5 M Hz MHz MHz ms ms Unit V
C
kHz kHz Hz Hz
Freescale Semiconductor, Inc...
VCO center-of-range frequency(1) Medium-voltage VCO center-of-range frequency(2) VCO range linear range multiplier VCO power-of-two range multiplier VCO multiply factor VCO prescale multiplier Reference divider factor VCO operating frequency Bus operating frequency(1) Bus frequency @ medium voltage(2) Manual acquisition time Automatic lock time
(3)
PLL jitter
0
--
Hz
External clock input frequency PLL disabled External clock input frequency PLL enabled Notes:
fOSC fOSC
dc 30 k
-- --
Hz Hz
1. 5.0 V 10% VDD 2. 3.0 V 10% VDD 3. Deviation of average bus frequency over 2 ms. N = VCO multiplier.
Technical Data 388
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Memory Characteristics
23.18 Memory Characteristics
Characteristic RAM data retention voltage FLASH program bus clock frequency FLASH read bus clock frequency FLASH page erase time FLASH mass erase time Symbol VRDR -- fRead(1) tErase(2) tMErase(3) tnvs tnvh tnvhl tpgs tPROG trcv(4) tHV(5) -- -- -- Min 1.3 1 8k 1 4 10 5 100 5 30 1 -- 10k 10k 10 Max -- -- 8.4M -- -- -- -- -- -- 40 -- 4 -- -- -- Unit V MHz Hz ms ms
Freescale Semiconductor, Inc...
FLASH PGM/ERASE to HVEN set up time FLASH high-voltage hold time FLASH high-voltage hold time (mass erase) FLASH program hold time FLASH program time FLASH return to read time FLASH cumulative program HV period FLASH row erase endurance(6) FLASH row program endurance(7) FLASH data retention time
(8)
s s s s s s
ms Cycles Cycles Years
Notes: 1. fRead is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG x 64) tHV max. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 389
Freescale Semiconductor, Inc.
Electrical Specifications
Freescale Semiconductor, Inc...
Technical Data 390
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 24. Mechanical Specifications
24.1 Contents
24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 40-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 392 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . . 392 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 393
Freescale Semiconductor, Inc...
24.3 24.4 24.5
24.2 Introduction
This section gives the dimensions for: * * * 40-pin plastic dual in-line package (case 711-03) 42-pin shrink dual in-line package (case 858-01) 44-pin plastic quad flat pack (case 824A-01)
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 391
Freescale Semiconductor, Inc.
Mechanical Specifications 24.3 40-Pin Plastic Dual In-Line Package (PDIP)
NOTES: 1. POSITION TOLERANCE OF LEADS (D), SHALL BEWITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITIONS, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. MILLIMETERS MIN MAX 51.69 52.45 13.72 14.22 3.94 5.08 0.36 0.56 1.02 1.52 2.54 BSC 1.65 2.16 0.20 0.38 2.92 3.43 15.24 BSC 0 1 0.51 1.02 INCHES MAX
40
21
B
1 20
DIM
MIN
A C
L N J
Freescale Semiconductor, Inc...
H
G
F
D
K
SEATING PLANE
M
A B C D F G H J K L M N
2.035 2.065 0.540 0.560 0.155 0.200 0.014 0.022 0.040 0.060 0.100 BSC 0.065 0.085 0.008 0.015 0.115 0.135 0.600 BSC 0 1 0.020 0.040
24.4 42-Pin Shrink Dual in-Line Package (SDIP)
-A-
42 22 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25 (0.010). INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.032 0.046 0.070 BSC 0.300 BSC 0.008 0.015 0.115 0.135 0.600 BSC 0 15 0.020 0.040 MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 3.94 5.08 0.36 0.56 0.81 1.17 1.778 BSC 7.62 BSC 0.20 0.38 2.92 3.43 15.24 BSC 0 15 0.51 1.02
-B-
1 21
L C H
-T-
SEATING PLANE
F D 42 PL 0.25 (0.010)
M
G TA
S
N K J 42 PL 0.25 (0.010)
M
M TB
S
DIM A B C D F G H J K L M N
Technical Data 392
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Mechanical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Mechanical Specifications 44-Pin Plastic Quad Flat Pack (QFP)
24.5 44-Pin Plastic Quad Flat Pack (QFP)
B L B
33 34
23 22 S
-A-, -B-, -D- D D
S
DETAIL A F
BASE METAL
S
C A-B
Freescale Semiconductor, Inc...
0.05 (0.002) A-B
-A- L
-B- B
M
V
0.20 (0.008)
0.20 (0.008)
M
H A-B
S
J D
N
DETAIL A
44 1 11 12
0.20 (0.008)
M
C A-B
S
D
S
SECTION B-B
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MILLIMETERS MIN MAX 9.90 10.10 9.90 10.10 2.10 2.45 0.30 0.45 2.00 2.10 0.30 0.40 0.80 BSC -- 0.25 0.13 0.23 0.65 0.95 8.00 REF 5 10 0.13 0.17 0 7 0.13 0.30 12.95 13.45 0.13 -- 0 -- 12.95 13.45 0.40 -- 1.6 REF INCHES MIN MAX 0.390 0.398 0.390 0.398 0.083 0.096 0.012 0.018 0.079 0.083 0.012 0.016 0.031 BSC -- 0.010 0.005 0.009 0.026 0.037 0.315 REF 5 10 0.005 0.007 0 7 0.005 0.012 0.510 0.530 0.005 -- 0 -- 0.510 0.530 0.016 -- 0.063 REF
-D- A 0.20 (0.008)
M
C A-B
S
D
S
0.05 (0.002) A-B S 0.20 (0.008)
M
H A-B
S
D M
S
DETAIL C
CE -C-
SEATING PLANE
-H- H
DATUM PLANE
0.01 (0.004) G M
M T
DATUM PLANE
-H-
R
K W X DETAIL C
Q
DIM A B C D E F G H J K L M N Q R S T U V W X
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 393
Freescale Semiconductor, Inc.
Mechanical Specifications
Freescale Semiconductor, Inc...
Technical Data 394
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Mechanical Specifications For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Section 25. Ordering Information
25.1 Contents
25.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Freescale Semiconductor, Inc...
25.3
25.2 Introduction
This section contains ordering numbers for the MC68HC908GP32.
25.3 MC Order Numbers
Table 25-1. MC Order Numbers
MC order number
MC68HC908GP32CP MC68HC908GP32CB MC68HC908GP32CFB
Operating temperature range -40 C to +85 C -40 C to +85 C -40 C to +85 C
Package
40-pin PDIP 42-pin SDIP 44-pin QFP
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA Ordering Information For More Information On This Product, Go to: www.freescale.com
Technical Data 395
Freescale Semiconductor, Inc.
Ordering Information
Freescale Semiconductor, Inc...
Technical Data 396
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 Ordering Information For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908GP32*MC68HC08GP32
Appendix A. MC68HC08GP32
A.1 Contents
A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 Mask Option Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Freescale Semiconductor, Inc...
A.3 A.4 A.5 A.6 A.7
A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 A.8.1 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . 403 A.8.2 5.0-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . 403 A.8.3 3.0-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . 404 A.8.4 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 A.9 ROM MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com
Technical Data 397
Freescale Semiconductor, Inc.
MC68HC08GP32 A.2 Introduction
This section introduces the MC68HC08GP32, the ROM part equivalent to the MC68HC908GP32. The entire data book apply to this ROM device, with exceptions outlined in this appendix. Table A-1. Summary of MC68HC08GP32 and MC68HC908GP32 differences
MC68HC08GP32 Memory ($8000-$FDFF) 32,256 bytes ROM 36 bytes ROM Mask option registers; defined by mask; read only. $001E -- MOR2 $001F -- MOR1 Not used; locations are reserved Not used; bit is reserved Used for testing purposes only. 42-pin SDIP 44-pin QFP MC68HC908GP32 32,256 bytes FLASH 36 bytes FLASH Configuration registers; write once after reset. $001E -- CONFIG2 $001F -- CONFIG1 FLASH related registers. $FE08 -- FLCR $FF7E -- FLBPR MODRST: monitor mode entry by blank reset vector bit. Used for testing and FLASH programming/erasing. 40-pin PDIP 42-pin SDIP 44-pin QFP
Freescale Semiconductor, Inc...
User vectors ($FFDC-$FFFF)
Registers at $001E and $001F
Registers at $FE08 and $FF7E
Bit 2 at $FE01 Monitor ROM ($FE20-$FF52)
Available Packages
A.3 MCU Block Diagram
Figure A-1 shows the block diagram of the MC68HC08GP32.
Technical Data 398
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc...
INTERNAL BUS M68HC08 CPU DDRA ARITHMETIC/LOGIC UNIT (ALU) PROGRAMMABLE TIMEBASE MODULE PORTA PTA7/KBD7-PTA0/KBD0
DDRB
USER RAM -- 512 BYTES 8-BIT KEYBOARD INTERRUPT MODULE 2-CHANNEL TIMER INTERFACE MODULE 1 DDRC 2-CHANNEL TIMER INTERFACE MODULE 2 SERIAL COMMUNICATIONS INTERFACE MODULE PHASE-LOCKED LOOP COMPUTER OPERATING PROPERLY MODULE SERIAL PERIPHERAL INTERFACE MODULE MONITOR MODULE PORTD 24 INTR SYSTEM INTEGRATION MODULE SINGLE EXTERNAL IRQ MODULE 8-BIT ANALOG-TO-DIGITAL CONVERTER MODULE POWER-ON RESET MODULE DDRD * RST PORTC MONITOR ROM -- 307 BYTES
PORTB
Freescale Semiconductor, Inc.
MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com
CLOCK GENERATOR MODULE OSC1 OSC2 32-kHz OSCILLATOR * IRQ MEMORY MAP MODULE MASK OPTION REGISTER 1 MODULE MASK OPTION REGISTER 2 MODULE PORTE DATA BUS SWITCH MODULE DDRE VDD VSS VDDA VSSA POWER
MC68HC908GP32*MC68HC08GP32 -- Rev. 6
SINGLE BREAKPOINT BREAK MODULE DUAL VOLTAGE LOW-VOLTAGE INHIBIT MODULE USER ROM -- 32,256 BYTES PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 PTB1/AD1 PTB0/AD0 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 PTD7/T2CH1 PTD6/T2CH0 PTD5/T1CH1 PTD4/T1CH0 PTD3/SPSCK PTD2/MOSI PTD1/MISO PTD0/SS PTE1/RxD PTE0/TxD SECURITY MODULE MONITOR MODE ENTRY MODULE
MOTOROLA
CPU REGISTERS
CONTROL AND STATUS REGISTERS -- 64 BYTES
USER ROM VECTOR SPACE -- 36 BYTES
CGMXFC
VDDAD/VREFH
VSSAD/VREFL
Ports are software configurable with pullup device if input port. Higher current drive port pins * Pin contains integrated pullup device
Shaded blocks indicate differences to MC68HC908GP32
MC68HC08GP32
Technical Data
399
Figure A-1. MC68HC08GP32 Block Diagram
Freescale Semiconductor, Inc.
MC68HC08GP32 A.4 Memory Map
The MC68HC08GP32 has 32,256 bytes of user ROM from $8000 to $FDFF, and 36 bytes of user ROM vectors from $FFDC to $FFFF. On the MC68HC908GP32, these memory locations are FLASH memory. Figure A-2 shows the memory map of the MC68HC08GP32.
$0000
I/O Registers 64 Bytes
Freescale Semiconductor, Inc...
$003F $0040 RAM 512 Bytes
$023F $0240
$7FFF $8000
Unimplemented 32,192 Bytes
$FDFF $FE00 $FE01 $FE02 $FE03 $FE09 $FE0A $FE0B $FE07 $FE08 $FE09 $FE0A $FE0B
ROM 32,256 Bytes SIM Break Status Register (SBSR) SIM Reset Status Register (SRSR) Reserved (SUBAR) SIM Break Flag Control Register (SBFCR) Interrupt Status Register 1 (INT1) Interrupt Status Register 2 (INT2) Interrupt Status Register 3 (INT3) Reserved Reserved Break Address Register High (BRKH) Break Address Register Low (BRKL) Break Status and Control Register (BRKSCR)
Figure A-2. MC68HC08GP32 Memory Map
Technical Data 400 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
MC68HC08GP32
$FE0C $FE0D
LVI Status Register (LVISR) Unimplemented 3 Bytes
$FE0F $FE10
$FE1F
Unimplemented 16 Bytes Reserved for Compatibility with Monitor Code for A-Family Parts
Freescale Semiconductor, Inc...
$FE20
$FF52 $FF53
Monitor ROM 307 Bytes
$FF7D $FF7E $FF7F
Unimplemented 43 Bytes Reserved Unimplemented 93 Bytes
$FFDB Note: $FFF6-$FFFD reserved for 8 security bytes $FFDC
$FFFF
ROM Vectors 36 Bytes
Figure A-2. MC68HC08GP32 Memory Map (Continued)
A.5 Mask Option Registers
The two mask option registers at $001E and $001F (see Figure A-3 and Figure A-4) are read-only registers. They are defined by mask options (hard-wired connections) specified at the same time as the ROM code submission. On the MC68HC908GP32, these two registers are called configuration registers (CONFIG2 and CONFIG1).
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com
Technical Data 401
Freescale Semiconductor, Inc.
MC68HC08GP32
Address:
$001E Bit 7 6 0 5 0 4 0 3 0 2 0 1 Bit 0
Read: Write: Reset:
0
OSCSCIBDSTOPENB SRC
Mask defined
Figure A-3. Mask Option Register 2 (MOR2)
Freescale Semiconductor, Inc...
Address:
$001F Bit 7 6 5 4 3 2 SSREC 1 STOP Bit 0 COPD
Read: COPRS Write: Reset:
LVISTOP LVIRSTD LVIPWRD LVI5OR3
Mask defined
Figure A-4. Mask Option Register 1 (MOR1) The bit functions for these two registers are the same as the configuration registers in MC68HC908GP32 (see Section 8. Configuration Register (CONFIG)).
A.6 Reserved Registers
The two registers at $FE08 and $FF7E are reserved locations on the MC68HC08GP32. On the MC68HC908GP32, these two locations are the FLASH control register and the FLASH block protect register respectively.
A.7 Monitor ROM
The monitor program (monitor ROM, $FE20-$FF52) on the MC68HC08GP32 is for device testing only. The monitor mode entry by blank reset vector bit, MODRST bit (bit 2 at $FE01), is not used in the ROM device -- the reset vector will always contain data in the MC68HC08GP32.
Technical Data 402 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
MC68HC08GP32
A.8 Electrical Specifications
Electrical specifications for the MC68HC908GP32 apply to the MC68HC08GP32, except for the parameters indicated below. A.8.1 Functional Operating Range
Characteristic Symbol TA VDD C - 40 to +85 3V 10% 5V 10% Value V - 40 to +105 3V 10% 5V 10% M - 40 to +125 -- 5V 10% Unit
Freescale Semiconductor, Inc...
Operating temperature range
C
Operating voltage range
V
A.8.2 5.0-V DC Electrical Characteristics
Characteristic(1) VDD supply current Run(3) Wait(4) Stop(5) 25 C 25 C with TBM enabled(6) 25 C with LVI and TBM enabled(6) -40 C to 125 C -40 C to 85 C with TBM enabled(6) -40 C to 85 C with LVI and TBM enabled(6) Low-voltage inhibit, trip falling voltage Low-voltage inhibit, trip rising voltage Low-voltage inhibit reset/recover hysteresis (VTRIPF + VHYS = VTRIPR)
Notes: 1. VDD = 5.0 Vdc 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. Measured with PLL and LVI enabled. 5. Stop IDD is measured with OSC1 = VSS. 6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32.8 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.
Symbol
Min -- --
Typ(2) 15 4 2 20 300 -- 50 500 4.25 4.35 100
Max 20 8 -- -- -- 35 -- -- 4.50 4.60 --
Unit mA mA
IDD
-- -- -- -- -- -- 3.90 4.00 --
A A A A A A
V V mV
VTRIPF VTRIPR VHYS
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com
Technical Data 403
Freescale Semiconductor, Inc.
MC68HC08GP32
A.8.3 3.0-V DC Electrical Characteristics
Characteristic(1) VDD supply current Run(3) Wait(4) Stop(5) 25 C 25 C with TBM enabled(6) 25 C with TBM enabled(7) 25 C with LVI and TBM enabled(6) -40 C to 85 C -40 C to 85 C with TBM enabled(7) -40 C to 85 C with LVI and TBM enabled(6) Low-voltage inhibit, trip falling voltage Low-voltage inhibit, trip rising voltage Low-voltage inhibit reset/recover hysteresis (VTRIPF + VHYS = VTRIPR)
Notes: 1. VDD = 3.0 Vdc 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. Measured with PLL and LVI enabled. 5. Stop IDD is measured with OSC1 = VSS. 6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 16.4 MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs. 7. Measured with TBM enabled using 32kHz crystal.
16 14 12 10 IDD (mA) 8 6 4 2 0 1 2 3 4 5 6 fBUS (MHz) 7 8 9 5.5 V 3.3 V
Symbol
Min -- -- -- -- -- -- -- -- -- 2.45 2.50 --
Typ(2) 5.2 1.65 1 12 25 200 -- -- 300 2.60 2.66 60
Max 8 4 -- -- -- -- 5 50 -- 2.70 2.80 --
Unit mA mA
IDD
Freescale Semiconductor, Inc...
A A A A A A A
V V mV
VTRIPF VTRIPR VHYS
Figure A-5. Typical Operating IDD
Technical Data 404 MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
MC68HC08GP32
5.0 4.5 4.0 3.5 IDD (mA) 3.0 2.5 2.0 1.5 1.0 0.5 0 5.5 V 3.3 V 1 2 3 4 5 fBUS (MHz) 6 7 8 9
Freescale Semiconductor, Inc...
Figure A-6. Typical Wait Mode IDD
1.6 1.4 1.2 1.0 IDD (A) 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 fBUS (MHz) 7 8 9 5.5 V 3.3 V
Figure A-7. Typical Stop Mode IDD
A.8.4 Memory Characteristics
Characteristic RAM data retention voltage Symbol VRDR Min 1.3 Max -- Unit V
Notes: Since MC68HC08GP32 is a ROM device, FLASH memory electrical characteristics do not apply.
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MOTOROLA MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com
Technical Data 405
Freescale Semiconductor, Inc.
MC68HC08GP32 A.9 ROM MC Order Numbers
These part numbers are generic numbers only. To place an order, ROM code must be submitted to the ROM Processing Center (RPC). Table A-2. ROM MC Order Numbers
MC order number
MC68HC08GP32CB
Operating temperature range -40 C to +85 C -40 C to +105 C -40 C to +125 C -40 C to +85 C -40 C to +105 C -40 C to +125 C
Package
Freescale Semiconductor, Inc...
MC68HC08GP32VB MC68HC08GP32MB(1) MC68HC08GP32CFB MC68HC08GP32VFB MC68HC08GP32MFB(1) Notes:
42-pin SDIP
44-pin QFP
1. Temperature grade "M" is available for 5V operating voltage only.
Technical Data 406
MC68HC908GP32*MC68HC08GP32 -- Rev. 6 MC68HC08GP32 For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 HOME PAGE: http://motorola.com/semiconductors
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Freescale Semiconductor, Inc...
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. (c) Motorola, Inc. 2002
For More Information On This Product, Go to: www.freescale.com
MC68HC908GP32/H Rev. 6.0 8/2002


▲Up To Search▲   

 
Price & Availability of MC68HC08GP32

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X